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PREFACE.

Thirty years have now elapsed since the appearance of

the treatise on the Calculus of Variations by Prof. Jellett,

which, although it had been preceded by the smaller work
of Woodhouse in 1810, and of Abbatt in 1837, is justly deemed
the only complete treatise which has ever appeared in Eng-
lish. But all the works named have long since been out of

print, and are now so rare as not to be found in the majority
of the college libraries of the United States. Moreover, even

Prof. Jellett's treatise can no longer be regarded as complete,
since its author had not read the memoirs of Sarrus and

Cauchy relative to multiple integrals, while the contributions

of Hesse, Moigno and Lindelof, and Todhunter were subse-

quent to the publication of his work. It should be added,

also, that all the memoirs and contributions just named are

contained in works which are likewise out of print, and are

now almost as difificult of access to the general reader as is

that of Prof. Jellett.

These considerations first led the author to undertake the

preparation of the present treatise, in which he has endeav-

ored to present, in as simple a manner as he could command,

everything of importance which is at present known concern-

ing this abstruse department of analysis.

In the execution of this design the following method has,

so far as possible, been pursued : When a new principle is to

be introduced for the first time, a simple problem involving it

is first proposed, and the principle is established when re-
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quired in the discussion of this problem. This having been

followed by other problems of the same class, the general

theory of the subject is finally given and illustrated by one or

two of the most difficult problems obtainable; after which
another principle is introduced in like manner.

Although the view taken of a variation is that of Profs.

Airy and Todhunter, and the methods of varying functions

are those of Jellett and Strauch, still all the other leading

conceptions and methods have, it is hoped, been explained
with sufficient fulness to enable the reader to follow them
when they occur in other works.

The history of the subject is also briefly given in the last

chapter, it being believed that the proper time for the presen-
tation of the history of any science is after the reader has

become familiar with its principles, as it can then, by the use

of some technical terms, be accomplished more fully within a

given space.
To aid the non-classical reader, the use of Greek letters

has, with the exception of two, whose use is now universal,

and which are explained, been avoided, except in references,

or in such passages as may be omitted without serious loss.

Attention is also called to the words brachistockrone and

parallelepipedon, which are in this work spelled according to

their derivation. The correct orthography of the former had

been previously adopted by Moigno and Todhunter, and it is

hoped that it may be sufficient to call the attention of Greek

scholars to the latter.

One of the great obstacles to the preparation of the pres-

ent treatise has been the difficulty of procuring the author-

ities which it w^as necessary to consult
;
and the author would

here return his thanks to the officers of his Alma Mater,

Columbia College ;
to Dr. Noah Porter, the President, and

Mr. A. Van Name, the Librarian, of Yale College ;
and to Mr.

Walter M. Ferris, of Bay Ridge, L. I., for the extended loan

of rare works which could not be found in other libraries, or
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if found, could not be had at home for that careful study
which they in many cases demanded. The author is also

greatly indebted to Lieut. Fred. V. Abbot, U.S.iV.
;

to M. S.

Wilson, Ph.B., to Prof. P. Winter, and to the late A. San-

der, Ph.D., all of the Flushing Institute, for valuable assist-

ance in the examination of French and German works. But
the greater part of the assistance which the author has received

was rendered by his youngest brother, who, in addition to

aiding in the examination of many works, recopied the manu-

script for the printer, and subsequently undertook, in con-

junction with the author himself, the proof-reading of the

entire publication.
It having been found necessary to publish the present treatise

by subscription, the author, supported by President Barnard

of Columbia College, Prof. J. H. Van Amringe of the same,

Joseph W. Harper, Jr., and others, issued an appeal to the

public, which shortly elicited the following subscriptions, the

copies being placed at four dollars each :

Seth Low and A. A. Low, 25 copies each.

D. Appleton & Co., 12 copies.
Richard L. Leggett and John Claflin, 10 copies each.

A. S. Barnes & Co., 6 copies.

Joseph W. Harper, Jr., Chas. Scribner's Sons, Ivison, Blake-

man, Taylor & Co., F. A. P. Barnard, LL.D., Prof. J. H. Van

Amringe, Columbia College Libraries, Gen. Alexander S.

Webb, John H. Ireland, Malcolm Graham, Franklin B. Lord,
Francis A. Stout, Fred. A. Schermerhorn, Frank D. Sturges,
Robert Shepard, Edward Mitchell, E. H. Nichols, Prof. Felix

Adler, W. Bayard Cutting, Hon. Benj. W. Downing, A.

Ernest Vanderpoel, John Cropper, Willard Bartlett, Clarence

R. Conger, Wm. Macnevan Purdy and Chas. Pratt, 5 copies
each.

Prof. C. W. Jones, 4 copies.
Wm. C. Schermerhorn, J. Harsen Rhoades, Prof. E. M.

Bass, Henry C. Sturges and Dr. Edw. L. Beadle, 3 copies each.
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Hon. Abram S. Hewitt, Gerard Beekman, Geo. P. Put-

nam's Sons, Dr. Geo. M. Peabody, Chas. A. Silliman, Hon.
Robt. Ray Hamilton, Morgan Dix, S.T.D., Wm. B. Wait,
Mrs. Asa D. Lord, Dr. J. W. S. Arnold, Dr. R. W. Witthaus,
Rev. Fred. B. Carter, Mrs. C. Roberts, R. L. Belknap, Prof.

C. M. Nairne, J. Forsythe, D.D., R. L. Kennedy, John A.

Monsell, Robt. Willets and John F. Carll, 2 copies each.

Johns Hopkins University, Williams College, Dartmouth

College, National College of Deaf Mutes, Perkins Institute

for the Blind, Kentucky Institute for the Blind, Indiana

Institute for the Blind, B. B. Huntoon, A. M. Shotwell, Henry
Bogert, N. J. Gates, Prof. E. L. Youmans, Prof. Wm. G.

Peck, Prof. Henry Drisler, Prof. Ogden M. Rood, Prof. Chas.

Short, Rev. Spencer S. Roche, W. E. Byerly, Prof. T. H.

Safford, J. P. Paulison, M. M. Backus, A. Wilkenson, J. H.

Broully, Geo. H. Mussett, F. L. Nichols, Col. Chas. McK.

Loeser, Prof. Samuel Hart, Prof. W. W. Beman, S. P. Nash, J.

McL. Nash, O. R. Willis, Ph.D., S.Vernon Mann, Hon.Wm. H.

Onderdonk, Henry Onderdonk, Rev. E. A. Dalrymple, Gouve-

neur M. Ogden, Robt. C. Cornell, Bache McE. Whitlock, Geo.

C. Cobbe, S. A. Reed, Prof. D. G. Eaton, Dr. D. H. Cochrane,
Geo. S. Schofield, Hon. Stewart L. Woodford, William Jay,

John McKean, Prof. H. C. Bartlett, Denniston Wood, Prof.

A. J. Du Bois, F. L. Gilbert, J. B. Taylor Hatfield, Foster C.

Griffith, Hon. Thomas C. E. Ecclesine, Malcolm Campbell,
Lefferts Strebeigh, R. H. Buehrle, Prof. H. A. Newton, Wm.
Hillhouse, M.D., Jas. L. Onderdonk, Wm. B. Patterson, Prof.

J. E. Kershner, Francis M. Eagle, Warren Bigler, C. J. H.

Woodbury, Rev. Peter J. Desmedt, D. H. Harsha, Prof. J.

W. Nicholson, Prof. Peter S. Michie, Lieut. S. W. Roessler,

E. F. MiUiken, Wm. P. Humbert, Chas. E. Emery, Prof. A.

B. Nelson, Adam McClelland, D.D., Prof. H. T. Eddy, Miss

H. L. Baquet, and others not wishing their names published,

I copy each.

Warned by the experience of others, the author was con-
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vinced from the first that he could hope to derive no pecu-

niary profit from a work like the present. But if it is now

possible that there may accrue to him some snlall financial

return, this possibility is due to the liberality of his publishers,

who, although consulted late, and knowing the unremuner-

ative character of the work offered, proposed voluntarily to

undertake its publication upon terms more favorable than

those which he had been endeavoring to secure.

The acknowledgments of the author are due also to his

printer, S. W. Green's Son, for the general excellency of the

proof furnished, and especially for his uniform readiness to

do, without regard to trouble, whatever was indicated as

tending to render the work more correct in minor points.

But while the author has, in the particulars mentioned,
received much assistance from friends, to whom he would
return his unfeigned thanks, he deems it but just to himself

to say that he has never enjoyed the acquaintance of any one

who had made the Calculus of Variations the subject of

extensive study, and has consequently been obliged to depend
solely upon his own judgment and the various works which
he has consulted.

It is not therefore believed that the present treatise can

be entirely free from mathematical errors
;
and hence the

author would respectfully ask his readers, and especially those

among them who may have given previous attention to this

subject, to indicate any points in which his methods or results

appear erroneous, or any places in which misprints may have

been allowed to pass unnoticed.

L. B. CARLL.
Flushing, Queens Co., N, Y., July 8, 1881.
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CALCULUS OF VARIATIONS.

CHAPTER I

MAXIMA AND MINIMA OF SINGLE INTEGRALS INVOLVING ONE
DEPENDENT VARIABLE.

Section I.

CASE IN WHICH THE LIMITING VALUES OF X, F, F', ETC., ARE
GIVEN

Problem I.

I. Suppose it were required to find the shortest plane curve or

line which can be drawn between tzvo fixed points.

Let ACB be the required line, which is of course straight,

and AEB any other line derived from the first by giving

X ox
indefinitely small increments to any or all of its ordinates,

while the corresponding values of x remain unaltered. Then
the line ACE must be shorter than the line AEB.

This remark would be equally true if the changes in the
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ordinates oi AB had not been made indefinitely small
;
but

then, even if the second line were shown to be longer than the

first, we could not be certain that some third line, lying a little

nearer the first, might not be shorter than either. Thus it

will be seen that questions may arise which require an investi-

gation of that increment which a curve would receive, not

from any change in the values of x, nor in the values of the

co-ordinates of the fixed extremities, but from indefinitely
small changes in the values of y throughout the whole or a

portion of the curve ; thus altering in a slight degree the

functional relation which previously subsisted between x
and y.

2. Now the general expression for the length of any plane
curve between two fixed points is

^=/V^p"+^^ .

(I)

in which the suffix i relates to the upper, and o to the lower

limit of integration, and this expression cannot be integrated
so long as y is an unknown function of x.

Hence, in determining the increment which will result

to a curve from an indefinitely small change in its form, we
shall be concerned with two species of small quantities : first,

those changes which x and y undergo as we pass from one

point to another indefinitely near or adjacent on the same curve,

which are denoted by dx and dy, these being necessary for

the general expression of / in (i) ;
and secondly, that change

which y undergoes as we pass from a point on one curve to

a point on another curve indefinitely near or adjacent, the

value of X being unaltered. These latter quantities are called

variations, and are denoted by the Greek letter d, delta, or d.

Thus dy is read, the variation of y ; -j— ,
the variation of -7-, etc.

As another illustration of the difference between these two
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classes of quantities, we might say that dy as used in (i) is

the difference between two consecutive states of the same

function of x, while Sy is the difference between two consecu-

tive or adjacent functions taken for the same value of x. The
use of this symbol S is due to Lagrange, and while it prevents

confusion, it also suggests the character of the variation as a

species of differential. It is plain that we can vary the form

of a curve which terminates in two fixed points in any man-

ner we please, by simply giving suitable changes to its ordi-

nates without varying its abscissas, and we shall therefore at

present ascribe no variation to the independent variable x,

but simply to the dependent y or to its differential coefficients

wnth respect to x,

3. Resuming equation (i), we will now show how to find

SI, or that increment which / would receive, not from any
change in the limits of integration, but from an inappreciably
small alteration in the value of jr as a function of x. We. shall

dy d^v
in general put y' for -p, y" for

^i-^,
etc. Then we have

dx"" -k dv"
dx^ + df = —^F^ d^ = (I +y^) dx^;

hence (i) becomes

^=ff'y^i~+rdx. (2)
1

It will be seen that y does not occur directly or explicitly
in the last equation ;

but since y' represents the natural tan-

gent of the angle which a tangent to the curve at any point
makes with the axis of x, it is clear that the form of this curve
can be also altered at pleasure by giving suitable variations

to the slopes of these tangents, and that if these variations be
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indefinitely small, the remarks that have been made regarding

dy will be equally true regarding dy' .

Equation (2) may be written

where

Now in Fchange y' into y + Sy'.

Then the new state of V, being denoted by V\ may be

developed by the extension of Taylor's Theorem, thus :

where, following the analogy of differentials, we write 6/%
d/\ etc., for {dyj, (dyj, etc. Hence, if we call V- V^SV,
we have

in w^hich -^„ etc., are the partial differential coefficients of V

with respect to y .

whence, if we change V into V\ dx remaining unaltered, and

denote the new state of / by /', we shall have

V = V'dx,

and calling V — /, dl, we arrive at the equation



SHORTEST PLANE CURVE BETWEEN TWO POINTS. 5

4. Before proceeding it may be well to advert to the

theory of maxima and minima, as developed by the differ-

ential calculus-

A function is said to be a 'maximum when its value is

greater, and a minimum when its value is less, than that

which it would have if any or all of its variables should receive

indefinitely small increments, either positive or negative.
Thus while the greatest value of a function, if not infinite, is

always a maximum, it does not follow that every maximum
is the greatest value of which the function is capable. Neither

is the greatest value in every case the only maximum. The

foregoing remarks apply equally to a minimum, it being only

necessary in either case to compare the supposed maximum
or minimum state of the function with the value of the states

which immediately precede and succeed it.

Taking, for simplicity, a function of a single variable, this

state is determined and comparison effected as follows : Let

/ be any function of x and constants, and change x into x -J- //.

Then if we developf ,
the new state of the function, by Tay-

lor's Theorem, and subtract the original state, we shall have

f'-f=t'^^h:^'''-^-^ w

h being either positive or negative.
We shall denote this series by 5. Then, if / is to be a

maximum or minimum,/'—/must be negative in the former
case and positive in the latter, independently of the sign of h.

But il no differential coefficient in S become infinite, and we
make // indefinitely small, the sign of S will either depend
upon that of its first term, which cannot be independent of h.
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or, if that term reduce to zero, upon the sign of the first that

does not.

Now if this term be of an odd order, its sign would be

affected by any change in that of h
;
but if of an even order it

would not, since h must be real. Hence any value of x which

would render/a maximum or minimum must at least satisfy

the equation -3— = o, and the roots of this equation furnish us

with trial values of x^ which, when substituted in the remain-

ing terms of 5, must render the second term negative for a

maximum and positive for a minimum, or must fulfil the

same condition for some other term of an even order, having
reduced those which preceded it to zero

;
and we must reject

those values of x which do not satisfy these conditions.

It may also be useful to observe that -j- does not repre-

sent the exact ratio of the increments of / and x, dx being

infinitesimal, but merely the limit of that ratio
;
that is, the

value toward which it may be made to approach to within

any assignable limit, but which it can never actually equal, it

being meaningless to say that dx ever really becomes zero.

Or, better, we may regard -j-
as merely a function derived

from f by certain algebraic methods which accord with the

rules of differentiation ;
and the same remarks will apply to

the higher differential coefficients of /.

Hence, since these coefficients are entirely Independent of

any increment which / actually receives, we may, without

altering any of them, replace h in (4) by dx^ Sx^ or any other

infinitesimal we please.

6. If the roots of the equation -j-
— o comprised all the

values of x which could render / a maximum or minimum,

still, since / might be capable of several maxima or minima,
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we would have to determine which maximum would be the

greatest, or which minimum the least; although the deter-

mination would in general be easy enough. But the equa-

tion in question does not give all the required values of x.

For, if any of the differential coefficients in (4) become infinite,

the reasoning of the last article will no longer hold true. In

fact, it is well known that / can become a maximum or mini-

mum when its first differential coefficient is infinite, or when
the same is finite while the second is infinite. These instances

are examples of what are often termed failing cases of Tay-
lor's Theorem—although, strictly speaking, the theorem does

not fail at all, only the development becomes useless from its

indeterminate character, and that not from any imperfection
in the theorem itself, but owing to the existence of such con-

ditions as to render impossible an entirely finite development
of the form required.

6. Since the' value of h in (4) is altogether independent of

its coefficients, and might be replaced by dx, dx, or any other

symbol we please, it is clear that the form in which we have

expressed d/ in (3) is analogous to that of 5 or/'—/, except
that each term in SI is multiplied by dx, and is under an

integral sign, and that the function taken is one ofy and con-

stants, among which x is reckoned.

Considering the first term of that expression, viz.,

/ dy

we see that by taking Sy indefinitely small throughout the

curve we may ultimately render this term greater than the

sum of the others, unless, indeed, that integral becomes zero

for all possible values of Sy; it being understood that the

variation of any quantity is to be always infinitesimal as com-

pared with that quantity. It is also clear that if we change
the sign of Sy throughout the integral

—that is, of each sy.
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leaving its minute numerical value unaltered—we shall also

change the sign of the above integral, while the sign of the

succeeding integral in (3) will remain unchangedi

7. From an examination of the figures, Art. i, it will be
seen that if ACB be the minimum line between two fixed

points, and we draw a second in any manner we please by
giving infinitesimal variations to y' ,

we may also draw a third

line by giving to y' variations numerically equal but of oppo-
site sign. Then, ^\\\cq ACB is a minimum, I'— I or 61 must be

positive ;
/' being the length of either of the lines ACB,

Hence, from the reasoning of the last article, we must have

since otherwise 61 could not be of invariable sign, as its sign
would be the same as that of the above integral, which could

be made to vary by changing that of 6y' . Moreover, the sec-

ond term in 6L viz.,

11 rr

must become positive; or if it reduce to zero, some other

term of an even order must become positive for all values of

dy\ all the preceding terms having reduced to zero.

But, as in the differential calculus, the foregoing is based

upon the supposition that none of the differential coefficients

of V in (3) become infinite within the limits of integration, or,

in other words, that V—V is throughout these limits capa-
ble of a finite development by Taylor's Theorem, where V
denotes what V becomes when we change y' into y'-\- 6y' ,

8. We may now proceed to a full solution' of the problem.
We have
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no alteration. Then denoting the new value of y' by Y'
,
we

have

Whence, subtracting from the first member y\ and from the

last its equal -^, we have
dx
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where the suffix i denotes what the quantities affected become

when X is x^, and o what the same quantities become when x

is x^. But since the two points through which the required
une must pass are fixed, Sy^ and dy^ are each zero

;
that is,

y receives no increment at these points, and therefore (8)

becomes

This equation can be satisfied by writing

d y' y

Squaring, clearing fractions, and transposing, we have

y- _ cy^ = c\ /=: -M=. = a, y = ax+ d,

Vi — ^

the general equation of the straight line.

11. It will be seen that the solution y=o is only a par-

ticular case of the more general one just obtained, and we are

therefore led to inquire why the method pursued in Art. 8

did not give a satisfactory result. Now, since we have the

equations Sy' = —-^, ^- = Cy (6) may be written
ax V

£?V tf/ dx = £\dSy = o,

whence, by integration.
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and because both dy^ and 8y^ are zero, this equation can be
satisfied without making c zero.

The error, therefore, in Art. 8 appears to have arisen from
the fact that we required the curve to pass through two fixed

points, anii then entirely disregarded that condition in obtain-

ing our solution. But (9) was estabhshed by expressly impos-

ing this condition upon the problem; and as there are no
further conditions to be imposed, and as ^y cannot be further

transformed, that equation can only be satisfied by equating
to zero the coefficient of dy dx in that equation.

12. Resuming equation (5), let us next consider the term
of the second order,

Jxa''~Sy-dx. (10)

If the solution given above be a true minimum, this term

must become positiv^e, or must reduce to zero. Now since

X is the independent variable, dx is always supposed to be

estimated positively ;
and as d/^ can never be negative, if we

also regard Fas positive, we see that every element of (10) is

positive, and that consequently the integral itself must be of

the same sign. We conclude, therefore, that a right line is

the plain curve of minimum length between two fixed points.

If the coefficient of Sy'^dx in (10), which we may call Z,

could have changed its sign within the given limits of inte-

gration
—that is, if Z could have been positive throughout

some portions of the curve, and negative throughout others

—we could make (10) take either sign, and there could be

neither a maximum nor a minimum. For by var3^ing y'

throughout those portions of the curve for which Z was

negative, while leaving the other portions unvaried, the inte-

gral would become negative, or by pursuing an opposite
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course it would become positive. Hence, in this and similar

cases, the coefficient of dy''^dx must be of invariable sign for

all values of x from x^ to ;r,.

If Z could have reduced to zero throughout the Avhole

range of integration, thus rendering the integral itself zero,

we might generally infer that the solution was neither a maxi-

mum nor a minimum. For in order to the existence of either,

the term of the third order involving Sy'^ must also vanish,

which would seldom if ever occur.

It will be observed that the term of the second order is

positive whether the extremities of the required curve are

supposed to be fixed or not. But if we disregard this con-

dition, the terms of the first order would not vanish, so that

we would not obtain a minimum, except, indeed, we adopt
the particular solution of Art. 8. We shall, however, subse-

quently show that when the limiting values of x only are

given
—that is, when the required curve is merely to have its

extremities upon two fixed lines perpendicular to the axis of

X—the solution of Art. 8 is that which must be taken.

13. In the preceding discussion we have merely proved
that the straight line between two fixed points is shorter than

any other plane curve which could be derived from it by

making indefinitely small changes in the inclination of its tan-

gents to the axis of x, either in certain portions or through-
out its whole extent. We could not, therefore, by the use of

the calculus of variations alone, become certain that the

straight line is the shortest plane curve which can be drawn
between two fixed* points, but merely that it is a curve of

minimum length, the existence of other minima being possible ;

one of which might, perhaps, be less than the present, and

might itself be the shortest curve.

Again, the precpding method does not permit us to com-

pare the straight line with all other plane curves which can be

drawm indefinitely close to it. For in developing /', Art. 3,
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we were obliged to ascribe indefinitely small increments or

variations to y' only, since y did not directly or explicitly
occur in /. Hence the curve which we derive by variations

can have no abrupt change of direction
; because no such-

change could occur without rendering dy' appreciably large
at that point. Therefore all curves with cusps, and all systems
of broken lines, are excluded from the comparison, although
it is evident from the figure that such curves might be drawn
without making the variations of y appreciable, but only those

of/.

(4. From the remarks of the preceding article, which
were deemed 'necessary in order to guard the reader against
certain misconceptions which are common among students of

this subject, it must not be inferred that the calculus of vari-

ations is of little use as a method of solving questions of max-

ima and minima. For we shall see as we advance that it can

in general be made to give a satisfactory solution when such

a solution exists. Indeed, the recent discoveries relative to

the theory of discontinuity, which are due chiefly to the labors

of Prof. Todhunter, and of which we shall speak hereafter,

show that this branch of the calculus does not in reality fail

to present solutions even in very many of 1;fiose cases in which

its failure has been hitherto assumed.

!6. It remains only to determine the constants a and b

which occur in the general solution. It will appear that since

the required line is to pass through two fixed points whose

co-ordinates are x^, y^, x^, jj/„ we must have
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and therefore so soon as these quantities are given a becomes

known. Then to determine b, we have jKo= <^^A- ^^

b = y — ax,=y — ^^^^'^
,r„,

and thus b is also known when x^, x^, /„, j\, are fully given.

16. In further illustration of our subject we next proceed
to consider another problem, the solution of which is not so

generally known.

Problem II.

It is required to determine the equation of the plane curve,

doiun which a particle, acted upon by gravity alone
^
would descend

from one fixedpoint to another in the shortest possible time.

Let a be the upper and b the lower point. Assume the

axis of x vertically downward, and a as the origin of co-ordi-

nates. Also let the variable s be the length of the required

curve at any point measured from a
; v, the velocity of the

particle at the same point ;
and /, its time of descent from a to

that point. Then we wish to determine the curve which will

render T a minimum, where T is the total time of descent

from a to b, or what t becomes at the point b. We must first

then find / as a function of x and j/, or their differentials.

Now, from the well-known differential equations of motion

in mechanics, we have

dt^'^' (I)
v

and, Art. 2,

ds = Vdx'+ d/= Vi +/' dx.
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We also know that the particle loses no velocity in pass-

ing from one point to another of a curve with no abrupt

change of direction, and that therefore, if it start from a

state of rest at a, its velocity at any point of the curve must

equal that which it would have acquired in falling freely

through the same vertical distance. Hence we shall have

V = V2gXy

g being the acceleration due to gravity. Therefore (i)

becomes

y2gx
and

T= / ,
~ dx, (2)

which is to become a minimum.

17. But since ^ is a constant, the second member of (2)

may be written

^' ^' +^"
d..

V2g
^^^ Vx

Now, it is evident in general that if c times any integral is to

be a maximum or a minimum (c being any constant), the in-

tegral itself must also be a maximum or minimum. Hence,

omitting the constant factor, the expression to be rendered a

minimum in this problem may be written

U= f —-"t^" dx = n Vdx, (3)

Now, as in* the preceding problem, changey 'mX^o y' -\-^y'

and develop by Taylor's Theorem. Then we shall obtain
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= / ——J=Sy'dx^ / :=.
• dyV4r+ etc. (4)

We shall not in future develop any variation beyond the

terms of the second order, since if the terms of the first two
orders should become zero, there could rarely if ever be

either a maximum or a minimum, as explained in Art. 12.

Hence we must have

r^ —=jL=Sy'dx = o, (5)

But since the two extreme points are fixed, we must impose
this condition upon the problem by integrating (5) by parts,

as in the preceding problem, and neglecting the terms thus

freed from the integral sign, because containing 6y^ and dy^.

Performing this operation, we shall obtain

- r'~--=jL= dydx^o, (6)

= 0, (7)

= c. (8)

dx
\/^{^i _|.y2)

d y

y
Vx{i +y^)

Now since c in the last equation is an arbitrary constant, make
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it equal to -=. Then squaring, clearing fractions, and trans-
^a .

posing, we have

'-— 'J^ — £
a a

Whence solving fory, we obtain

y = . > (9)
Va — X

which is known to be the differential equation of the cycloid.
Therefore

J/
= versin

-^^ x ~ Vax — x^-\- b, (lo) x

where a is twice the radius of the generating circle, and b is

zero, because the origin was taken at the upper point. The
last equation may be finally written thus :

j = r versin"^ \^2rx — x'', (ii)

where the circular function is natural, and r is the radius of

the generating circle.

18. By disregarding the condition that the curve must

pass through the two fixed points, we shall, as in the preced-

ing problem, obtain from (5),

y'
z=:0,

VxiT^y'^)

which makes y' zero, and y a constant, which must also be

zero, because the curve passes through the origin. There-

fore the curve would in this case coincide throughout with^
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the axis of x, which solution could only be possible when the

two points were in the same vertical line, and then its truth is

self-evideht.

19. Let us now consider the term of the second order, viz..

Jxa ^sy^dx, (12)^0
2|/;r(l+y7

If the cycloid be the true solution of our problem, this term
must become positive, whether y' be varied throughout the

whole integral or only throughout certain portions taken at

pleasure. To satisfy this condition it is merely necessary that

Z, the coefficient of Sy'dx in (12), shall become positive and
not change its sign as we pass from a to b. But since x can-

not become negative in this problem, the square root of x is

real and may be considered as always positive from a to b
\

then, as we may regard Vi -\- y'"^ as always positive, the above
conditions are satisfied, and we conclude that the cycloid,

having a cusp at a, its base horizontal, and its vertex down-

ward, is a solution of our problem.
Let us also try the solution / = o of Art. 18

;
this will

reduce (12) to

J.•"• 2Vx

which will also become necessarily positive if we assume \G:

to be positive. Thus this solution likewise, when it is pos-

sible, renders T a minimum, as it evidently should.

20. Remarks similar to those made in Art. 13 apply also

to this example. For it is plain that we have only compared
the cycloid as a curve of descent, with all other curves pass-

ing through the given points, having no abrupt change of

direction, and drawn indefinitely near to it. Hence we have
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in reality only shown that the cycloid is one of the curves

which renders T a minimum, the term minimum being used
in the technical sense hitherto explained. However, as in the

fornier problem, these restrictions are merely theoretical, and
are noticed in order to prevent misconceptions which might
occasion difficulty in subsequent discussions.

For in the present case the cycloid between two points is

undoubtedly the curve of quickest descent from one to the

other, and from this property it is often called the brachisto-

chrone.

21. In addition to what has been already said, we must
here call attention to another point which is often passed
over by elementary writers on this subject. Suppose y' to

become infinite for some point within the range of integra-

tion, as it does at the vertex of the cycloid. Then when we

changey intoy -\- Sy' ,
if we regard, as we must by the theory

of the subject, Sy' as taken arbitrarily, but always indefinitely

small, we can make the new or derived curve assume any
form we please, except that its tangent at X must have the

same direction as that of the cycloid at the vertex, where X
IS the abscissa of the vertex. For suppose the vertex tangent
of the cycloid to undergo a slight change of direction, so that

its new angle of inclination to ;i' may differ from a right angle
in an indefinitely small degree. Then we cannot assert that

this small change of direction could be produced by an in-

definitely small change in the value of y\ or the natural tan-

gent of the right angle. That is, owing to the indeterminate

nature of infinity, we cannot with certainty apply the method

of variations to any element of the integral which is affected

by an infinite value of y' ,
and hence the integral must not be

extended so as to include this element. In the present case,

then, we are only sure of a minimum so long as we are not

obliged to go beyond the vertex of the cycloid for b.

But the occurrence of an infinite value of y' in any case
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will not warrant us in concluding that the solution does not

give a true maximum or minimum, even when the integral
includes that value of y'. All that we can say is that the pro-

posed method becomes inapplicable. Indeed, we shall have

occasion to show that sometimes, by changing to polar co-

ordinates, or by some other change of the independent vari-

able, the integral may in these cases be freed from infinite

quantities, and the previous solution shown to give a true

maximum or minimum.
Of course if we regard Sy' as zero when y' becomes in-

finite—that is, consider the tangent to the curve as fixed at

that point
—the variation of the element becoming zero, may

be included in the development, and all difficulty disappears.
It will be observed that F becomes infinite at A, and the

solution is therefore still subject to any objection, but there

would seem to be none, which can arise from this fact.

Case 2.

22. As a means of still further extending our knowledge
of variations, let us resume the preceding problem, merely

taking the horizontal as the axis of x.

Then, the notation and the other conditions being un-

changed, we must, as before, render T a minimum. But, as

formerly,
ds

dt = -^, ds = Vdx'+d/ = Vi +y'dx,
V

where y' now means the natural tangent of the angle which

any tangent to the curve makes with the horizontal instead of

the vertical axis. Also, v = V2gy, so that, neglecting, as be-

before, the constant factor, we must minimize the expression
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Now in V change y into y + dj, and / into / + Sy' . Then
we may develop V ,

or the new state of F, by the extension
of Taylor's Theorem, thus :

We also have

u' ^ r'v'dx,

where U' is what ^becomes when we change Finto V-\-dV
or into V, dx being unaltered. Hence caUing U' — U, dU,
we have

Indeed, it is evident that a similar course could be pursued
should V contain any number of quantities capable of being
varied.

23. It may be well before proceeding further to refer

briefly to the subject of maxima and minima of functions

involving more than one variable, as it is developed by the

differential calculus.

Let/ be a function of x, y, z, etc. Give small increments,

k, i, k, etc., to X, y, z, respectively, and develop /', the new
state of /, by Taylor's Theorem. Then the terms of the first

order in /'—/will be

^^ I ^/;4_^/ ^j_etc
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which must collectively vanish ;
and if the quantities h, i, k,

etc., be independent, each of the partial differential coeffi-

cients of / must also vanish. Then the terms of the second

order.

2 \dx^ dxdy
'

dy^

must become collectively negative for a maximum and posi-

tive for a minimum. Also, if the increments be independent,
the second partial differential coefficients of / must fulfil cer-

tain conditions among themselves, for an account of which, as

they have no application here, the reader is referred to works
on the differential calculus.

24-. The expression for SUm. (i) is similar to that for/'—/,

only each term is multiplied by dx, and is under an integral

sign, Sy and Sy' taking the place of h and i, dx being regarded
as constant. In the present case, therefore, the two integrals

of the first order in (i) must collectively vanish, while the three

integrals of the second order must become collectively positive.

25. We have

dV_ Vi+y dV _ y' d'V _ 3Vi+/'

dy
~

2y^
'

dy'

~
^{^ -\- y''')y df

~~

4/^

d^v ^ y -

^r^ I

dydy' 2 \/\i +/V dy"" |/(i 4-/7/
Hence equation (i) becomes

A — Sy \ dx. (2)
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Whence we have

Now, it might at first appear that we could regard 8y and

dy' as independent, and thus might equate to zero each of the

integrals in (3). But since the curve is to pass through two
fixed points, this condition, which has not yet been regarded,
must be imposed upon the problem, and may be said to limit,

in some sense, the independence of ^y and Sy\ This condi-

tion can be imposed by means of the second integral only,
since the first is incapable of any further integration. For

putting for dy' its value from (A), we have

4/(1 +y>^-^ ^(i+y> ^ dx ^{^ij^yy
•"

Hence, since Sy^ and Sy^ are zero, when we make the integral

definite, the two terms which will be without the sign of in-

tegration will disappear, and we shall have

and therefore (3) may be written

_rJi^L3^ + -^
_-/_ U^^.^o. (4)

t/o^o I 2y^ dx
^^{j^j^yyS

Thus 6y' has been eliminated, and there being no further

conditions to impose; (4) can only be satisfied by writing

^•+^%^ -..4=^ = 0. (5)
27^ dx ^i^iJ^yy

Multiply the first term by dy, and the second by its equal,

ydxj and we have
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^=^dy-\-y'- —•"- dx = o, (6)

Then by parts,

and again by parts,

so that we have, finally,

— -^ T^~ — a constant, say -—^, if)

|/(i +y^)j/ y ^
Va .

^^

Now reducing the first member to a common denominator,
Ave have

= ^, y{i+y^) = a, y^ = ^^; (8)

1/(1 +y^)j^ |/^ J

which last equation cannot be integrated by solving for y.
But we readily obtain

I dx Vy
-7 or -— = -—-•^—

,

ji/ dy s/a—y

which is as before the differential equation of the cycloid, in

which a equals 2r
; only x and y have been interchanged, as

will appear from equation (lo). Art. 17.

26. If we disregard the condition that the curve is to pass

through two fixed points, we shall have, from (2),
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Now the first of these equations can only be satisfied by
equating to zero the coefficient of dydx, and then, as we may
evidently neglect the supposition that y is infinite throughout
the curve, we have, necessarily,

s/i +/' = 0, y=± V^^ ;

a result which shows that a solution by this method is impos-
sible.

The solution y = o of Art. i8, which will become in this

case J/'
= CO

,
is also suggested by this method

;
for if in the

second of equations (8) we make a infinite, then, since y cannot

be always infinite, we shall find thaty is infinite. This solu-

tion, representing the vertical through A^ has been already
shown to give a true minimum

; although the considerations

of Art. 20 show that it could not be investigated so long as

the horizontal is taken as the independent variable. This case

then exemplifies the remarks there made relative to over-

coming, by a change of the independent variable, the difficulty

presented by the occurrence of infinite quantities.

27. Let us now examine the sign of the terms of the

second order in dU. Since those of the first order vanish, we

have, from (2),

^-'£1 sy -^2x^1 +yy

H /. , ,^^̂ c dx, (10)

From the second of equations (8) we have

|/yT+yr)= ^a,
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and therefore (lo) becomes

6U=S; i 'l§Sf
-
-4. 6y Sy +-^ Sy^ I d.. (I I)^^°

( oy 2y Va 2a Va j

But ?— can be written ^ ,
where r = -, or the radius

8/' 2 Va . 2/ 2

of the generating circle. Whence (i i) becomes

6U=-^r\^,S/-^-dy 6y' + I
dy'^ \

dx. (12)

But, from equation (A),

// Sy6yd.=l'-l-r-l4.y-.cl.. (13)
«/j-^-^ y 2 ^ 2 dx y

^

Put/ for •^'. Then
y

£y ,y Sya, ^ 1
[i^ s/,

-
/, Sf]

-
j/r^/^^^. (14)

But since the extreme points of the curve are fixed, dy^ and

6y^ are each zero, and we have

£y sy sydx = -
'-Xyy^ dx. (IS)

But

^dx^di^ y^y'
-/'^y ='^-t-yLdx;

dx y y y^

and because dy = y'dx, the last equation may be written

^^
^^ - j

I y'dy y
dx \y dy f^^dx=\iy^-Qdx. (16)

[y dy f )
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Now differentiating the third of equations (8) and dividing by
2, we have ,
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y is zero, y' becomes infinite. That is, we cannot with confi-

dence include in our investigation every element of the definite

integral U, because at ^, F becomes infinite. We cannot,

however, conclude that there is not a minimum, because we
do not know what effect a variation ofy in this element would

have upon the general result. Indeed, we do know that if the

second point be not beyond the vertex, we have a true mini-

mum, and we now see also that if the tangent at A be fixed—
that is, if the cycloid be compared with any other derived

curve whose tangent is at right angles to the horizontal—we
shall in any case have a minimum.

The term derived will be used to denote any curve which

can be obtained from the original or primitive curve by the

method of variations, and must therefore be always indefinitely

near to its primitive, and without abrupt change of direction.

29. The preceding discussion shows the advantage of

taking the vertical as the independent variable. For while

the result by either method is the same, as indeed it must be

in every case, it is much more easily obtained by the former.

This is due to the fact that in the former case x, being inca-

pable of variation, enters the function F, thus leaving y only
to be varied, while in the latter y and /, both being capable
of variation, enter V, thus rendering the problem one of two
variables.

When we come to the terms of the second order, the

results apparently agree also. But while that in the former

case is readily obtained, and is probably entirely trustworthy
so long as we do not wish to pass the vertex, in the latter

case some transformation is required in order to obtain any
result, and even then, owing to the occurrence of an infinite

value of y at the outset, we cannot rely implicitly upon our

investigation unless we regard the derived curve as having at

A the same tangent as its primitive ;
that is, the vertical.
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Problem III.

30. // is required to determine the form of the plane curve

which shallpass through two fixed points^ and which shall include

between itself̂ its evolute, and its radii of curvature at the two

fixedpoints a minimum area ; the extreme tangents of the required
curve being also fixed.

As before, let ds be an element of the required curve, r the

radius of curvature, and U the area which is to become a

minimum. Then

U=f\ds, (I)

and we must first express U in terms of x, y, y, etc.

We have

ds = Vi +/' dx,

^_ (dx^ + dyy^ d/ _ ds^ _ V{i+yy ,.

dxdy dxdy y"dx' y"
' ^^

the sign ± having been disregarded. Substituting these

values, and assuming that the curve is to be concave to the

axis of X, and y" therefore negative, (i) may be written

Now change y' into y' -f- Sy\ y" into y" -\- Sy\ and develop as

before. Then including the terms of the second order, we
have

2t/xo (

y y

V^^^^f^]^^. (4)
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Whence we must have

Now it is plain, as before, that the two integrals combined

in the last equation are not independent, there being here two
conditions to be imposed upon the problem ; namely, that ^}\

and ^y^ shall vanish, and also that Syl and Sy^ shall vanish.

To impose these conditions, we have only to extend the

method already employed. Thus, putting K for -^ ^
„ -,

we have

/ K Sy'dx := K dy — I "--—- 6y dx,

/; K Sy-d. = /r. 6y,
- a; Sy„

-
ly^Sy dx. (6)

Also putting L lor ^

„•;

'
,
and observing .that

y

^ ~
dx'

~
~dx

'

we have

And in a similar manner we obtain

r 'jL Sy'd. =m 6y^
- m] 6y^

- T'^ 6y d..
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Collecting and arranging these results, (5) becomes

Now, if we suppose Sy^, dj//, ^j/^, Sj//, to severally vanish,

we shall thereby impose the two given conditions upon the

problem, and (8) will become

As there are no further conditions to impose, this equation
can only be satisfied by writing

Restoring the values of K and Z, and integrating, we have

y"
^ dx f'

-Vc-o, (II)

which, since dy' z=z y"dx, may be written

^l(LpylUy^y,,Sl±^+ cdy' = o. (12)

Then integrating by parts, we have



THE E VOLUTE PROBLEM. 33

Hence (12) gives

iSL^yy^cy+c'=.o, (13)

(I +yy ^ 4;

But from equations (i), (2) and (3) we readily obtain

r _ dx

and substituting this value in (14), observing t\i2itydx = dy,

we have

Let t denote the angle which the tangent to the required

curve at any point makes with the axis of x. Then ~ = sin /,

dx
and -J- = cos t. Also, let d be the constant angle whose

ds

natural tangent is -. Then c = h sin b, and c' = h cos b
;

//

being some constant at present unknown. Then substituting

in {15) these values of c, dy ~, —-, it becomes
ds ds

r =. — (sin / sin ^ -f- cos t cos ^) = - cos (/
—

B), (16)

which is the intrinsic equation of the cycloid, h being equal to

eight times the radius of the generating circle, and b the angle
'made with the axis of x by the chord joining the cusps.

31. Let us next examine the sign of the terms of the second

order. Since those of the first order vanish, (4) becomes
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- 4/^- Sy'Sf+ ('
+/")' y-

}
dx

But since the axis of x is so taken as to render the cycloid
concave to it, y" is always negative, and therefore the factor

—~ is always positive, since the sign of each element depends
y
upon that of this factor. We infer, therefore, that the cycloid
is the curve required ; although, because y" becomes infinite at

the two cusps, our investigation will perhaps be subject to

some doubt if we are obliged to include either cusp within

the range of integration.

32. If we attempt to neglect the two conditions which are

to hold at the limits, and to regard 6y' and Sy" as independent,
we shall have the two equations

4/(i +yo _ ^ (i+yT _ ^

both of which give y'^
= 00, which cannot be true if the re-

quired curve is to be continuous. The seeming solution,
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y' = o, of the first equation must be rejected, because, if it

could hold, the curve becoming a straight line would cause j^'

to vanish also, and thus the equation would become indefinite.

33. It is evident that the cycloid will not give the least

possible value of the area in question. For by joining arcs of

cycloids, or even of circles, of indefinitely small radius, the

area may be made as small as we please, as will appear by the

subjoined figures :

We have, therefore, theoretically only a minimum in the tech-

nical sense hitherto explained.
In fact, the method here employed excludes all curves

having either y or y' infinite within the given range of inte-

gration ;
and it also enables us to compare the cycloid with

such curves only as can be derived from it by any arbitrary

indefinitely small changes in the values of y and y. Still,

under the conditions which we imposed upon the problem—
viz., that the extreme points, and also the direction of the

extreme tangents, should be fixed, and the subsequent condi-

tion that the required curve should be concave to the axis of

X—there can, we think, be no doubt that the cycloid gives not

only a minimum, but also the least value of the area in ques-
tion.

Section II.

CASE IN WHICH THE LIMITING VAL UES OFX ONL YARE GIVEN.

34. The reader having now become somewhat familiar

with the general method of the calculus of variations, we shall

next present some theoretical considerations, which are usually
advanced before the discussion of problems is attempted.
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Suppose we wish to determine the conditions which will render

U a maximum or fninimumy where

Then it will be found, as in the preceding examples, that U
can be reduced to the form

U : r^vdx,

where V is some function of x, y, y' , y'\ etc.

Now change jF intoj/+ Sy, / into/ + 6y\ etc., x remaining
unaltered. Let V, in consequence of these changes, which are

indefinitely small, become V\ and U become W, Then we
shall have

U'= r'V'dx.
tlXo

Also let U' - Uhe denoted by dl/, and F' - Fby ^V. Then
if Sy, sy, etc., be indefinitely small, ^Uand ^Fwill also be in-

definitely small. It is clear also that we shall have

U' -U or dU= r^V'dx- r^Vdx

= r\v -v)dx= r^svdx, ( I)

Now if we develop (^Fby Taylor's Theorem, it becomes

-^1(a df J^ 2 B 6y Sy+ CSy'-\- zDSy 6y" +
etc.), (2)
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in which — ,
—

>, etc., are the partial differential coefficients of

dy ay
F with respect to y, y\ etc.

;
and A,B, C, D, etc.^ are the second

partial differential coefficients of V with respect to the quan-

tities whose variations immediately follow them. Substituting

this value of dFin (i), it becomes

_|_ \fJ\A S/^2B dy dy' -{. C dy" -^ 2 D dy dy"+ etc.) dx. (3)

Now, by our previous reasoning, the first Integra] must

vanish for either a maximum or a minimum, while the second

integral must become negative for a maximum and positive

for a minimum.

35. It has probably been observed that our treatment of

the terms of the first order has been quite uniform, while our

treatment of those of the second order has differed in nearly

every case. The general discussion of this latter part of the

problem, or, as it is called, the discrimination of maxima arid

minima, is the most difficult of all the subjects connected with

the calculus of variations. Although the foundations had been

laid by Legendre and Lagrange, and the problem could be

solved in certain cases, still no general method was known

prior to the year 1837, when Jacobi published a theorem,
which we shall explain hereafter, and which reduces this

portion of our investigation also to a uniform rule.

We shall, therefore, at present speak of dU 2iS involving
terms of the first order only, except when the contrary is

expressly stated.

36. Let us now consider more generally than hitherto the

equation 6^^= o.
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By (3) this becomes

and this equation is true whether the values of y, y, y" , etc.,

at the limits are fixed or not, it being merely required that the

limiting values of x only should be fixed. Now by means of

the known relations given in formulae (A), (B) and (C) we

can, by integration by parts, transform any term in (4) until it

shall consist of terms free from the sign of integration, and an

integral involving dy dx.

Let N, P, Q, R, S, etc., be the coefficients of Sy, Sy\ Sy\ etc.,

in (4), and consider for example the term

«y. =^,
We have

^ dx' dx^ ^ dx dx^

rdSd'dy_ _ _ dSd'dy Pd'Sd'dy ^
"J dx 'dx'

'~
dx dx" "^^ dx' dx"

'

rd'Sd^ ^ _ cPSdSy _ rd'Sddy
^^J dx"" dx""

~
dx' dx ^ dx' dx

^ dx' dx dx'
-^ ' ^ dx'

rs6/^d.=(ssr-f6y"+gsy-g,syxq
-^

\
-" dx dx"" dx'

+ / -r-r ^y dx.
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Integrating the other terms in (^^ in a similar manner, collect-

ing and arranging the results, we have

^^=r-^+^^--^3-+etc.w

/^ dQ
,

d'R d'S .
\ .

, /^ dR . d'S ^ \ . ,

(^ dR . d'S M . /

-[^-d^+ d?--''''l'^^

+{^-S+^4"-^^^^-(^-S+^^^-)^^»''

+(S- etc.), c^j^/"
-

(S
-

etc.)o <^Jo"'+ etc.

in which -j-, -y^, etc., are the total differentials of these quan-
dP (PQ
dx'' dx^

titles with respect to x.

Finally, for convenience, (5) may be written thus

SU=L-£^'Mdydx, (6)

and this equation holds, whether the values of Sy^ 6/, dy" , etc.,

at the limits vanish, as we have hitherto supposed, or not; the

limiting values of x only being required to remain fixed.



40 . CALCULUS OF VARLATLONS.

37. We see that SU\n (6) consists of two classes of terms

which are essentially different
;
the first depending solely upon

the values which the quantities (^J/, ^y', etc., and P, Q, R, etc.,

with their total differential coefficients, may have at the limits
;

while the second is an integral involving the general values of

these quantities. Now since (5^ t/ must vanish when ^is to be

a maximum or a minimum, let us consider these two parts of

(^^ separately in this case.

Write, for convenience,.

L = h, dy- K ^jo+ \ ^y:- k h:-\-j. h:-j\ ^y:+ etc. (7)

Then it is plain that the several quantities Sy^^ 6y^, Sy^, Sy^\

etc., are entirely in our power ;
that is, we may impose at the

limits any conditions we please, so long as all the variations

are indefinitely small and x^ and x^ remain immutable. It is

likewise clear that the quantities h^, h^, i^, i^, etc., are not in our

power. For suppose the equation

dU= L
-{-fj Mdydx = (8)

to have been solved so as to give j/ as a function of x, say/(;ir).

Then this equation would be a solution of the problem to find

the value of y, or the equation of a plane curve, which would
render Udi maximum or a minimum ;

and as we wish to compare
only this primitive with its derived curves, we must consider

^0, //j, etc., as referring to this primitive and to the given limits

only. These quantities can therefore, so soon as the equation
of the curve and the values of x^ and x^ are known, be found.

Hence if h^, h^, i^, Zj, etc., do not severally vanish, we can

make L assume any infinitesimal value we please by suitably

choosing dy^^ dy^, Sy^\ dy^\ etc. But if the solution y =z f[x)
cause these quantities to severally vanish, L must become zero

also, and no other condition will cause L to vanish necessarily
without restricting the values of Sy^^ 6y^^ dy^', etc.
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38. Let us now consider the second term,

£y'y dx.

In this integral Sy is wholly in our power, being subject only
to the condition that neither it nor any of its differential co-

efficients, to the 7tth inclusive, shall become appreciable within

the range of integration, y"^^ being the highest differential co-

efficient in V. In other words, Sy may be any arbitrary func-

tion of X which fulfils these conditions, or it need not even be

the same function throughout the entire range of integration.
On the other hand, M is not in our power, but will, as in the

case of h^, h^, etc., depend upon the equation j ^=zf{x). Hence
if M be not necessarily zero throughout the given limits of

integration, the integral will be wholly in our power, and we

may, by suitably varying y, make it assume any infinitesimal

value we please. But if the solution y = f{x) reduce M to

zero throughout U, then the integral itself, being definite,

must become zero ;
and it will not necessarily vanish under

any other condition, so long as 6y is wholly unrestricted.

39. Resuming equation (8), Ave have

L=-S.ySydx. (9)

Now if the solution j =/(;i;) be such as to cause the quantities

/^o, h^, i^, /„ etc., and also M to severally vanish, then each

member of (9) will likewise vanish, and no difficulty will occur.

But if the proposed solution be not able to fulfil all these con-

ditions, (9) becomes an impossible equation. For inasmuch

as L and J^
M dydx are no longer necessarily zero, it would

in effect imply, as Prof. Jellett has remarked,
" that the inte-

gral of an arbitrary function may be expressed (without deter-
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mining or even restricting its general form) in terms of the

limiting values of itself and a certain number of its differen-

tial coefficients. This is manifestly untrue."

We conclude, then, that it is necessary to the existence of

a maximum or minimum not only that L and M shall vanish,

but that each of the quantities h^, h^, z^, z^, etc., and M, shall

become zero.

40. Although the truth of the preceding principles would

appear to be sufficiently evident, yet Strauch, one of the most
elaborate writers on the calculus of variations, asserts that it

cannot be proved that L and / M dy dx must severally vanish ;

and as this is a point of the highest importance, and of some

difficulty, we have given it more attention than it has generally
received hitherto. Strauch is, however, compelled to admit

that we do obtain correct results by this method
;
and there

can, as Prof. Todhunter states, be no doubt that the principle

is sound.

4-1. Before proceeding further we will apply the foregoing

theory to the solution of some examples.

Problem IV.

Let V be any function of y" and constants only, and let it be

required to detennijie the relations which vizist szibsist between x

andy in order to maximize or minimize the expression

u=syd^^

x^ and x^ only beingfixed.
We have

SU=^ r^^^-^r h"dx = r^Q S/dx = o.
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Then transforming dU, as just explained, and denoting by
accents total differentials, we have

+ir'Q'Sydx^Q, (i)

Whence, since M must vanish, we have

Q'^o, Q = c, Q = cx+ c'^ (2)

If we had supposed the values y and y' at the limits to be

given as in former examples, the solution could be carried no

further without determining the form of V. But since dy^,

^y^ ^Jo^ ^yl ^^^ ^^^ necessarily zero, we must, from the pre-

ceding discussion, have the coefficients of these quantities

severally zero. Hence 2/ = o, QJ = o, Q, = o, Q^ = o. From
the third and fourth of these equations, combined with (2),

we have cx^-{- c' = o, ex, -\- c' = o, c{x^
— x^ = o. Whence

c = o, and then c/ = o. Therefore the last of equations (2)

gives Q = o.

If this equation is to hold throughout U, y" must be con-

stant, although it may have several constant values. Let a

be one of the roots of the equation Q — o. Then, as y" = ^, by
integration we obtain

j/=^+ ^^ + -5', (3)

the equation of a parabola ;
or of a straight line if a should

happen to become zero.

The constants b and b' cannot be determined so long as the

values of j^ and y^ are not fixed. For it is easy to see that

the equations Q' = o and QJ = o furnish no new equations
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of condition, because they follow from Q — o^ and any values

of b and b' which satisfy the latter will also satisfy the former

two.

Owing to its simplicity, we may also examine the term of

the second order^ which is

2«^^o dy

Since y" is a constant, ~^, which is some function of y\
dy

must be also a constant, say A ; then, since the terms of the

first order vanish, we may write

2 ^^

which shows that we have a maximum or minimum accord-

ing as A is negative or positive.

Problem V.

42. // is required to maxiinize or minimize the expression

the limiting values ofx only being given.

We have

SU= r\^y"^y" - 2^J) dx = - 2yl" Sy^ + 2y:" dy^

+ 2J'." &J'/
- 2y: 5y: +fj\2/-'

-
2) 6ydx = o. (i)
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Whence equating M to zero, and integrating, we have

y'=i,
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Now suppose, for simplicity, that we take x^ equal to any
constant e, and x^ to — e. Then (9) and (10) give ^ = o,

b =
,
and (6) would become

x" e'x''

y = \-cx-\-d. (11)
24 4

' ' ^ ^

But it will be remembered that this equation is only
admissible on the supposition that we are able to make

h^^y^
— hfy^ vanish

;
and as h^ and h^ cannot severally vanish,

this is accomplished by fixing the values of y^ and y^, and the

assignment of these values will afford us the conditions for

determining the remaining constants. Equation (11) now

gives

-^f+
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we have x^ = e, x,=^ — e, y, = o, y^ = o, y/ = i, yj = — i.

Then, from (5), we have

Then eliminating c between (17) and (18), we have

and from the same equations we obtain

^ =
-J-' (20)

Moreover, substituting in turn e and — e for x in (6), we have

^ =
^ +T + T + ^'+ '^' (^')

Eliminating dy we have

—+ 2^^ = o. (23)

Substituting for a its value from (20), we find ^ = o, whence
also a = 0; and again substituting these values with that of b,

(21) gives

24 2
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Now substituting these values in (6), we have, finally,

y— x"
-\ .

24 \2e 24 2

The term of the second order is merely

which is of coUrse positive, thus giving a minimum. That is,

any solution which reduces the terms of the first order to

zero will render U a minimum.^

43. Now resume for a moment the consideration of Prob.

I. There we have

which give y^ = o, and 7/ = o. But since we know from the

general solution that y'
—

a, these two conditions are in reality

only one, a =^ o. Hence if no restrictions be imposed except
that x^ and x^ shall be fixed, the line must be parallel to the

axis of X,

But the constant b cannot be determined in this case. In-

deed it is evident that the straight line parallel to x is shorter

than any other curve, or straight line even, which can be drawn

having x^ and x^ as the abscissae of its extremities, and that

hence our first result is confirmed. Moreover, since the

length of this line will be the same, whatever be its distance

from the axis of x, the value of b can have no effect upon its

length, and therefore ought to remain undetermined. If,

however, the co-ordinates of one of its extremities be given,
the line becomes a parallel to x through that fixed point, and

b is determined.

* The last two examples are from the Adams Essay, by Prof. Todhunter (p. 15),

but have been considerably elaborated.
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4-4. Next consider Prob. II., Case i. There we find

But from equation (8), Art. 17, if we make h^ or h^ zero^ we
see that the equation

y — Q

must hold throughout the curve, and this gives y' = o, which,
as it denotes the vertical, is the true solution. For if a par-

ticle be merely required to descend from one horizontal plane
to another, it will do so along the vertical sooner than along

any other line. The equation of this vertical is y = d, in

which the value of d can have no effect upon the time of

descent, and therefore remains undetermined, as it should.

Next consider the second case of the same problem'. There
we have

The first of these equations gives j// = o
;
and since V{i -\-y''')y

— V2r, r being the radius of the generating circle, we have

.( |/(i+y>f „
V2r

and this, if equated to zero, will give // = o, which is evi-

dently impossible. Hence h^ cannot be zero
;
and to make the

term h^Sy^ vanish, we must assign the value oi y^.

Now it will be remembered that the general solution was
a cycloid, having a cusp at the starting-point of the particle,

and that b was merely the value oi y^, which is now deter-

mined. Moreover, since we have just found that the tangent
to this cycloid at the point which is not fixed must be par-
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allel to the axis of x, it follows that its vertex must be at this

point. Hence the generating circle must be such that it

would roll through a semicircle while its centre was de-

scribing the distance x^— x^, and therefore we have

^1
—

^0r = ~ -.

45. Let us in the last place consider Prob. III. If we
could have fully integrated equation (lo), Art. 30, the inte-

gral would have involved four constants, and for determining
these constants we would have 7/, y^, j/^, y^ equal to four

assigned quantities. It would, however, be too tedious to

discuss this case in detail, and we will next suppose the values

of 7o and y^ to be fixed, while those of j// and 7/ are variable.

Then equating to zero the coefficients of ^yl and Sy^^ we
shall have

^l.=

and since \/ i-\-y''^ cannot be zero, y" and y" must each be

infinite, thus giving the cycloid cusps at the two fixed points.

Let b denote the angle which the line joining these cusps
makes with the axis of x. Then b is identical with b of equa-
tion (16), Art 30, and is at once determined, its tangent being

y^
-

y.

^1-^0
Then, also,

8 27t

Let us now suppose the values of y^ and y^ to be unre-

stricted. Then we must equate the coefficients of ^y^ and

djo severally to zero, which will give the equation
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and. a similar equation for the lower limit. But from equa-

tion (it), Art. 30, the first member of the last equation equals
—

c, making c in this case zero. Therefore equation (13) of

the same article becomes

(i+yy _ d

y" 2*

Now d cannot vanish. For if it can, we must either have

\/\ 4-y = o, which would rendery imaginary, ox y" must be

infinite throughout the curve, which is also inadmissible. But

if dy^ and Sy^ do not vanish, we must, as we have just seen,

have y" and y^' infinite. It follows, therefore, that j// and 7/
must become infinite, as d would otherwise vanish.

We conclude, then, that the cycloid must in this case be

so placed as to have the line joining its cusps parallel to the

axis of X. Then we shall evidently have

^ ^ ^,
-

;r.

27r

while the constant angle b of equation (16), Art. 30, will be-

come zero, and it is easy to show also that <^ = 8r = h.

46. It is evident that none of the results of the preceding
articles could be confirmed as maxima or minima without an

examination of the sign of the terms of the second order,

because even if those terms were shown to be certainly posi-

tive or negative, in any particular problem, by making any
of the variations Sy^, Sy^^ 6y^', dy^', etc., zero, it would not fol-

low that we could be certain of the same sign when those

restrictions were removed or modified.

But it will be remembered that in the problems thus far

discussed we have, with the exception of Case 2, Prob. II.,

been able to determine the sign of the terms of the second

order without imposing any restriction upon the variations

of y and y' at the limits. The only result, then, which we
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have to confirm is this : that when the starting-point of the

particle is given, its terminal point being restricted to have a

given abscissa x^, the curve of quickest passage from x^ to x^

will be a cycloid with a cusp at the first point, and its vertex

at the second. An examination of equations (12) and (13),

Art. 27, will show that if we had not supposed Sy^ and dy^ to

be zero, equation (19) of the same article would have become

27

in which the integral is positive as before. But by hypothesis

dj/„
= o, and asy vanishes at the vertex, while j^ becomes a or

2r, we have (—
)

= o. Hence both terms without the sign of

integration vanish, and we have a minimum as before.

4-7. We may now proceed without difficulty to that gen-
eral discussion of the terms of the first order which is usually,

but unadvisedly we think, presented prior to the discussion

of particular problems.

Assume the equation U — I Vdx, where V is any func-

tion of X, y, y' . . . . y^\ and let it be required to determine

what function y must be of x in order to render U a maxi-

mum or minimum. Then finding dU, and transforming it by

integration as far as possible, and then equating to zero sever-

ally the coefficients of dy^, dy^, etc., together with M, which is

the coefficient of Sy dx under the integral sign, we obtain the

equations h^ = o, h^ — o, i,
= o, z^

= o, etc., and also M = o,

where, as will be remembered,

,, dP
, d'Q
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all the differentials being total, and iV, P, Q, etc., being the

partial differential coefficients of V with respect to y, y\ y",

etc.

Now the equation M = o will, in general, be a differential

equation of the order 2;/, because its last term will be

d^ dV

which will usually involve

dx'
=

(yw))(«)
= y{2ny

Hence the complete integral of this equation must usually
contain 27t arbitrary constants, and may be supposed to be

put under the form

y = f{x, C„ C„ c,n)
= /. (i)

Now since every solution of our problem must satisfy

the equation M=o, it must also be comprised in (i), which
establishes a general relation between x and y, or, in other

words, gives us some plane curve
;
which relation or curve is,

however, capable of great modification, by adjusting suitably
the values of these 2n arbitrary constants.

48. If now we examine the equations //,
= 0, ^0 = o> ^tc,

which we may call the equations at the limits, we shall find

that their number is also 271. Moreover, these equations, not

holding throughout the curve, do not establish any general
relation between x and y, as did the equation M=o, but

merely fix the conditions which the required curve must fulfil

at the limits. This is as it should be. For if the equations
h = o, i — o, etc., could be supposed to hold throughout the

curve, they would each establish a relation between x and y,

and unless these relations should happen to agree with each
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Other, and also with that derived from the equation M = o,

which would seldom if ever occur, the solution would become

nugatory.
Now suppose the complete integral of the equation M=o

were obtained, and expressed as in (i). Then if the form of/
were known, we could form the expressions h^, h^, t^, etc., and
these expressions would all be known functions of either x^ or

x^, together with some of the 2n arbitrary constants, no vari-

able entering these functions, because x^ and x^, being assigned

quantities, may be regarded as constants also.

We see then that in the equations h^ = o, k^ = o, etc., we
have 2n equations between x^ and x^ which are assigned, and
2?t arbitrary constants, and should therefore be able to deter-

mine these 2n constants in terms of the known constants x^

and x^.

Now suppose the limiting values of y^ and y^ were given.

Then, since the variations of these quantities would become

zero, /^, and /i^ would no longer necessarily vanish. But in

this case it is evident that the two equations thus lost would

be replaced by the equations jk^
—

f{x^, c^, c^ . . . . c^n) —fv ^nd

y. = A^o, c,,c^ c^y^
= /„ ;

and as jk^ and y, are now sup-

posed to have assigned values, the number of the equations

for the determination of the 2n constants remains, as before, 2;/.

In like manner, if ^// and Sj/J should become zero, the con-

ditions i,
= o and t,

= o would disappear. But to supply
their place we would have the equation

and a similar equation for the lower limit, j// and j/ being

now assigned constants also
;
so that we still have, as before,

2n ancillary equations.

Suppose, lastly, that any of the variations Sy^ ^y^, Sy^', etc.,

were connected by given equations, and suppose there were

m such equations. Then if we should express as many of the
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variations as possible in terms of the remaining variations,

and then equate to zero the coefficients of the several varia-

tions in the reduced system, it is plain that our ancillary

equations would be only 2n — m in number. But since we
have the m equations between certain variations, we are evi-

dently able to form new systems of independent variations in
'

such a manner as to obtain 7n more equations between x^, x^,

and the 2n constants.

Thus we see that, theoretically at least, the terms at the

limits furnish us with 2n equations for the determination of

the 2n arbitrary constants, which would in general occur in

the complete integral of the equation M—o, and that what-

ever condition reduces the number of the original equations,

by annulling or combining two or more of them, will at the

same time furnish in their place as many new equations for

the determination of these constants as have been removed.

49. The preceding considerations, which are theoretical,

require some modification, first as regards the terms at the

limits, and second as regards the equation M = o. With

regard to the terms at the limits, it has probably been noticed

that it has not been in general possible to satisfy all the equa-
tions //,

= o, //„
= o, etc., as some of these equations become

conflicting. But even in these cases we can, as we have seen,

generally obtain 2n harmonious equations by restricting one

or more of the variations ; as, for example, by supposing dy^,

dj/^, or (^K/, etc., to vanish.

In fact, the occurrence of these conflicting equations de-

notes merely that the problem in its present form is not

capable of solution, and as it might be foreseen that such

questions would present themselves, the occurrence of these

conflicting equations would naturally be expected.

50. The following exceptions may be regarded as due to

the nkture of the equation M = o, although they properly
arise from the nature of the function V.
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Exception i. Suppose N to vanish in the equation M= o,

which would of course happen if y did not exphcitly enter V.

Then we would have

whence

dx^ dx'
^^'^•-O'

ax dx

But the first member of the last equation equals h
;
and as h

must vanish at either limit unless the values of )\ and y^ be

assigned, we have c =.o\ and since the equations h^ = o and

//o
= o are each satisfied by this value of c, they furnish no new

condition for the determination of any other constant which

may enter the complete integral of the equationM = o. Thus
the conditions furnished by the terms at the limits are in this

case reduced to 2;^ — i, two of them having become identical.

If, however, the value of either y^ or y^ be assigned, this will

furnish a new equation of condition which will compensate
for that which was lost.

This case is fully exemplified by the discussion of Prob. I.

in Art. 43 and Prob. II., Case i, in Art. 44.

Similarly, suppose V to contain neither y nor y'. Then
we would have

,^ d'Q d'R
, ^ ^

'

^

dO d'R
dx dx^

etc. = a, (2)

G-g + etc. = «^+ ^. (3)

Now if the limiting values of y are variable, we have h^ = o

and //„
= o

;
and it is easy to see that in this case, as P is want-
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ing, the first member of (3) is z, and that of (2) is — A, and

therefore we have ax^ -J- <$> = o, and ax^ -f- ^ = o, whence we
find a — o and d = o, and (3) becomes

Now it must be remembered that this equation has been de-

duced solely from the conditions z,
— o and i^

= o. But dif-

ferentiating (4), we have

dQ d'R
, ^ J-^ -^ + etc. = 0, QT —h= o.

dx dx

Whence it appears that since the equations h^ = o, //„
= o, can,

without involving any other relations, be deduced from the

equations z^
= o, z^

= o, they furnish no new data for the de-

termination of the constants which will be found in the com-

plete integral of the equation M = o. Hence in this case our

ancillary equations will furnish but 271 — 2 distinct conditions,

thus leaving generally two constants undetermined, unless

one or more additional equations be supplied by assigning
the values of one or more of the quantities j/j, jo, j/, y^\ etc.

This case is fully exemplified in the discussion of Prob. IV.

Generally, if the first in of the quantities y, y', y", etc., be

wanting in F", while at the same time the variations of these

quantities at the limits remain unrestricted, in arbitrary con-

stants in the general solution must also remain undetermined.

51. Exception 2. Suppose V to contain only the first

power of y^^ the highest differential coefficient which is in-

volved. Then in this case the equation M=o cannot be of

an order higher than 2n — i. For the last term in M must be

± -z-^ ~rj^y
^^^ ^^ ^"^^ *^^ ^^^^ power of y^) occurs in V, the
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partial differential coefficient of V with respect to y*^> will not

contain that quantity at all. Whence it is evident that M
cannot be of an order 2n

;
and indeed Prof. Jellett has shown

that it cannot in this case rise above the order 2n — 2 (see his

page 46), but it does not seem necessary to reproduce his

proof here.

Now in this case the equations at the limits will be, as

before, 2n in number, while the constants in the complete in-

tegral of the equationM—o will not exceed in number 2n— \,

and in fact will not exceed 2n — 2. This seeming exception

is, however, explained by the fact that in all such cases the

integral U^ orJ Vdx, is capable of being reduced by integra-

tion to the form ^==/i — /o+ / V'dx^ where f and /, are
t/ Xq

quantities free from the sign of integration, while V^ does not

contain any differential coefficient of y higher than y^
-

^)
;
and

we will next show that this reduction can be effected.

62. Let y^-) be the highest differential coefficient in V.

Then, since its first power only occurs in F, we may write

j7_^yn)_|_^^ (l)

where w is that part of F which is a factor of y*^\ and z the

other terms of V, both being of course of a lower order than

y^^\ Then the equation U — J^' Vdx becomes

nx-^ nxi

U—J wy^'^^dx-^J
zdx. (2)

But we are evidently able to form the following equation :

fwy^^)dx
= W+fzdx, (3)
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where Wand Z are functions at present unknown. For this

equation can, if in no other manner, always be formed thus :

/ wy^'^^dx — wy^'^^x -\-J
— —-

zvy^'^'^.xdx. (4)

But W and Z can be so taken that the second member of (3)

will contain no higher differential coefficient than y^--^), be-

cause (3) can, in the following manner, be satisfied upon this

assumption. First differentiate (3), and we shall have

,, ^ ,

dW
,

dW
, ,

dW „
, ^ ,

dW ,, ,
,

^yin^ =
Z-Y^^+^^-y+-^^ry

+ ^tC. + ---/n,. (5)

which must be the complete differential of (3) if our assump-
tion be true, but not otherwise. But (5), and consequently (3),

will be satisfied if we put

„ dW
^

dW
,

^ ^ ,

dW ,
,.- ^ =

^- + -dy-y
+ ^^" +

^y^)-^'^"
• W

Therefore ^is found by integrating w with respect to y^^-i)

only. Hence, finally, we have*

= W,-W,+ r'v'dx. (8)

This case, then, is in reality no exception at all, because the

* This theorem is due to the great Euler (see Meth. Inven., pp. 62, 75), and

has been nearly reproduced by Prof. Jellett on his page 46.
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difficulty arises merely from the fact that the original integral
had not been reduced to its lowest terms. For although we
have not yet considered the class of problems to which this

reduced form of U belongs, it is easy to see that the equationM = o, resulting from V^ only, will not now be of an order ex-

ceeding 2n — 2, which is the result obtained by Prof. Jellett.

53. Exception 3. Let V be of the form y/-\-F, where /
contains only quantities incapable of variation, e.g. x and con-

stants, and F may contain any quantities except j/. Then
JV becomes simply /, and the equation M = will give the

equations

dx dx^
etc. =r/.

Now the first member of (i) equals ]i\ and if we suppose

J/, and /o to be unrestricted, we must have h^ —o, i^ = o
;
and

using these restrictions, (i) will give

{/WJ +^ = 0, (2)

and

'/Or)}
+. = 0. (3)

But as the first members of (2) and (3) contain only one

indeterminate constant, c, it will in general be impossible to

satisfy both equations, and the problem in this form does not

usually admit of a solution. But if we make / zero, so that

V is any function not containing /, the problem becomes a

case of Exception i, and may or may not, according to its

nature, be capable of a general solution, one constant at least
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remaining undetermined. This exception is exemplified by
Prob. v., in which/= -

2, F= y"\
64. It is now evident that if we require that U shall be a

maximum or minimum, the calculus of variations will ter-

minate its aid in the discussion by leaving us with a series of

differential equations, that of the highest order holding true

for all values of x from x^ to x^, the others merely holding at

the limits of integration. From the former of these equations,

as it is general, the general solution must be obtained, and

then the remaining or ancillary equations, not being general,

mpst be satisfied, if they can be satisfied at all, by the assign-

ment of suitable values to the constants which will occur in

the general solution
;
or we may say that these ancillary

equations determine the values of the constants.

The determination of these constants is not in general dif-

ficult when the complete integral of the equation is known
;

but this integral is often obtained with difficulty, and is some-

times altogether unobtainable. In fact, this difficulty is anal-

ogous to that which is frequently experienced in solving the

final equation or equations of condition given by the differ-

ential calculus in the discussion of an ordinary problem of

maxima or minima, except that in the former case the final

equations are differential and must be solved by the calculus,

while in the latter they are algebraic and must be solved by
the theory of equations.

55. We shall next proceed to establish some principles re-

garding the integrability of the equation M = o, and to deduce
some formulae which will be found useful in our subsequent
discussions.

Suppose, in the first place, that the first m of the quanti-
ties N, P, Q, R, etc., were wanting in the equation M = o,

which would of course happen if the first m of the quantities

J> y'l y" 1 y'" y ^tc, were wanting in F; then the equation
J/= o can be integrated at least m times.
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For let m be 4, for example. Then we would have

which, being integrated four times, becomes

S V- etc. = -—A
\- ex -\- d,

dx 62
and similarly if m were any other number.

56, Suppose, in the second place, that the independent
variable x does not occur explicitly in V\ then the equation
M= o can be integrated at least once. For since V does not

contain x, we have

dV= Ndy+ Pdy'+ Qdy" + Rdy'" + etc.

= {Ny' -\-Py" -\-Qy"'^Rf'^^\.Q>,dx, (i)

Now substituting in the last member of (i) the value of N
derived from the equation M —o, viz.,

jyj_dP d'Q ^^^
dx dx^

we shall have

But every parenthesis in (2) can be integrated by parts.

Taking, for example, the third, and recollecting that

y ^ dx = dy"\ y"'dx = dy\ y"dx = dy\



GENERAL FORMULA. ^3

we have

Jr^^ dx = Ry'" -J^^y["dx,

rdR ,„, dR „ . rd'R „,

rd'R „, d'R , rd'R ,,

Hence

/{^/' + /^l^.=/^y"-fy'+^y. (3)

Integrating the remaining terms in a similar manner, we
would have

which equation is certainly of an order lower than that of the

differential equation M — o.

The following particular cases of this formula are given
for convenience of reference :

First. If F be a function of y' only, we shall have, from (A),

v=c + py. (B)

But since in this case F is a function of y, P must also be a

function of y' ;
so that (B) may be written

Ay')+/p{y)--=c =/'{/),

where f is an arbitrary function. The last equation can

therefore only be satisfied by makingy a constant, say y' = r„

which gives y=CiX-\-c^.
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Hence if we require the nature of the curve which will

maximize or minimize the expression U =^ ^Vdx, where V \s>

any function of y' only, the straight line is the solution, if

there be a solution
;
that question being decided by an appeal

to the terms of the second order.

Second. If F be a function of y and y' only, (A) will still

give
v=c+py. (C)

Third. If F be a function of y and y'^ only, then (A) will

give

F-.+ e/-gy. (D)

57. Suppose, in the third place, that the independent vari-

able Xy and also the first in of the quantities y, y', y% etc., are

wanting in F; then the equation M ^^ o can be integrated at

least m -\- i times. Let in, for example, be 4 as formerly.
Then the equation M =^ o, after having been integrated four

times, according to the first case, and using /, q, r, s, etc., for

P, Q, R, S, etc., to prevent confusion, becomes

s —
\-
—- — etc. = ax^ -\- bx" •\- ex -\- d, (i)dx dx

Also, we have the equation

dV ^sdf^ -^ tdf""^+ iidy"^^^+ etc.

=
(^y^) + /y^) + uy^"^+ ^y«^+ etc.) dx. (2)

Substituting in (2) the value of s derived from (i), we have

dv =
(/y^> +^f\ dx + (^^y

*) -
^/ j'(^^)

dx

-j-
/^y ')+ ^^ y5)j

^^ _j_ etc. + {ax'+ bx' J^cx-\-d) /'^ dx. (3)
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Integrating by parts, as in the second case, we have

+f{ax' -^ bx' -^ ex -\- d)f dx.
(4)

Moreover, the integral sign can easily be removed from the

remaining terms in (4). For, by parts, we have

/ ax^y^^^dx
—

ax""/^ —J ^axY^'dx,

-fiax^dx = - saxy +f6axy''dx,

I 6axy"'dx = 6axy" — I 6ay"dXy

r—
J 6ay"dx = — 6ay\

Hence

/ axy^^^dx = ax^f^ — ^ax^y'"+ 6axy" — 6ay' ;

and in like manner we may integrate all the other terms.

Thus, for example, in Prob. IV. we find, after two integra-
tions of M,

Q or _,=.^+ .,

which, being again integrated, gives

V= cxy"
-

cy'+ c'y"+ d.
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Or, let V be a function of y' and y" only. Then, after one

integration of M^ we have

P f^ = <^.

ax

We also have

and substituting the value of P from the preceding equation,
we have

dV= [af+ Qy'"+ ^yy^y

which, being integrated, gives

Problem VI.

68. // is required to determine the form of the solid of revo-

lution which will experience a niinimiun resistance in passing

through a homogeneous fluid in the direction of x, the axis of
revolution of the solid.

Although it is evident that the problem does not admit of

a solution until some further restrictions are imposed, we shall

at present merely assume that the distance x^
—

x^ is given.

Let ds be an element of the generating curve, pds the nor-

mal pressure which it experiences in passing through the fluid,

and V its velocity in the direction of that normal, or the velo-

city with which the particles of the fluid are displaced by it

in that direction. Then, adopting the usual theory regarding
the pressure and resistance of fluids, we have

pds = czf'ds, (i)
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where <: is a constant depending upon the density of the fluid.

Let v' be the velocity of the body in the direction of the axis x.

Then

and (i) becomes

j,ds =
cv'^^,ds. (3)

Let dz be the surface of the elemental zone, described by ds.

Then, since dz = 27ryds, we shall have/</^, or the normal pres-
sure upon this zone,

= 27typds = 271cv'"^ ^-^ ds, (4)

Now the force pdz, being distributed normally about the

zone, may be regarded as aggregated and exerted in the

direction of any particular normal, and may, moreover, be

resolved into two components, the first in the direction of x,

and the second in the direction of y, and the first is the only
one which resists the motion of the body in the direction of x.

Therefore, rdz being the resistance of any elemental zone to

the forward motion of the body, we have

rdz=pd.'t^:=2nc'J^^!^ds, (5)

in which only the numerical" values of the quantities have
been regarded. Let R be the resistance of any zone included

between the two planes ^= ^r^, x ^ x^, and we shall have

R = 2^c.'' r'l^. ds ^ 2ncv-r^^Jx.e/so ds ^^0 I -\- y'^

Now we shall not regard the resistance experienced by any
plane cylindrical end, should there be one, so that R is the
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quantity which must become a minimum. Therefore, neglect-

ing, as usual, the constants c, tt, v\ we are to minimize the

expression

y

Here, as Fis a function of y andy only, and as

p_,, 3yxi+y')-2/'^
(I +/o=

'

we have, by formula (C), Art. 56,

i+y'
^^

(i+zT ^^

which is the convenient form of the constant. Whence we
derive the equations

yy" ^ lyy" _ . ^yy" ^,

I +/" (I +y?
^- (7)

Reducing the first member of (7) to a common denominator

and solving for y, we obtain $

y = '^f^. (8)

From this differential equation, although it cannot be fur-

ther integrated, we may obtain the value of x. For differ-

entiate (8), and w^e have

dy or yd. = . y-4y(i+yvy-(.+/T3y!^. (^^
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Whence

^. = .4/'(i+/')73(i+/?^y
y"

^,y:^'_^,_,,
y

_ idy' _2dy' _idy'\~
\y' y" y"r

^^^^

which is easily integrated, giving

Now if we suppose equations (8) and (11) to be combined

so as to eliminate y' ,
we shall obtain an equation between

X, y, c, and d, which will be the equation of the required
curve in finite terms, and may be supposed to be expressed
under the form

/{x,y,c,d) = o=/.

Then if we suppose the values of y^ and y^ to be given, we
shall have

/{x^, y„ c, d) = o, /{x„ Jo, c, d) = 0;

from which equations we must determine c and d in terms of

the given quantities x^, x^, y^, y^. But if y^ anii y^ be not given,
we shall have

^ = p. =y,/3/'(i+y')-2y'\_^.

which gives either y^-=^o or jj//
= o

;
and a similar equation

for the lower limit.

But it is easy to see that the form of /cannot be practi-

cally determined, as the elimination of y' just proposed can-
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not be effected
;
while it is well known that the theory which

we have adopted regarding the resistance of fluids is not

altogether trustworthy. The problem will, however, afford

ground hereafter for some useful remarks regarding the terms

of the second order, and is also of historic interest, having

occupied the attention of Newton, Legendre, and others.

Problem VII.

69. It is required to detennine among all curves which can be

drazun between two fixed poifits^ that which, being revolved about

the axis of x, will generate the surface of mi7iimum area.

Let ds be an element of the generating curve. Then the

surface which is to become a minimum will be 27r /
^

yds, or
e/so

2nJ
^

y \/i j^y'^^dx, SO that, neglecting the constant, we must

minimize the expression

u=£yv,+y^dx=£ydx.

yy'
Here F is a function of y and / only, and P— —===.

Hence, by formula (C), Art. 56, we have the equations

y _= a, (2)

Squaring, clearing fractions, and transposing, we have

y'=^^^. (3)
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To render (3) integrable, we must solve thus :

the integral of which, using the upper sign, is

^^al{y+Vf'^^')-\-b, . (5)

the equation of the catenary, as we will next show.

Now it is plain that if we regard the axis of x as fixed, but

that of y as movable, we can render b any quantity we please

by suitably choosing the position of that movable axis
;
that

is, by suitably determining the origin on the fixed axis x. In

this case let it be so taken that b becomes — ala, and then

(5) will become

. = ./^±.^ZEZ. (6)

Let e be the Napierian base, then (6) will give

ae^ =y-\-Vy'' — a\ (7)

But from (3) we obtain

Vy"^
— a^ ^= ay\

whence (7) gives
X

a^=y-\-ay'. (8)

Now if in (7) we make j/
= o, 4: becomes imaginary.

Whence the curve does not meet the axis of x, and y is always
positive. But if we make x — o, y becomes a, and y' at this

point becomes zero, it being zero at no other. Moreover, we

have y" = --, so that the curve is convex to the axis of x, and
a

is without cusps or points of inflection. Therefore / changes
sign when ;ir = o, and also we have certainly a minimum ordi.
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nate at that point. Now as points which have equal ordi-

nates have also y' numerically equal, but positive or negative

according as the point lies at the right or left of the origin,

and as (6) shows that there can be no two equal values of y
on the same side of the origin, we conclude that the curve

has—at least so far as it extends—for every point at the right
of the origin, a point at the left, having an equal ordinate,

while the values of x and y' are numerically equal, but with

contrary signs. Hence we may also write

X

ae ^ ^^ y — ay' . (9)

Therefore, adding (8) and (9), we obtain

^a(e^-\-e
Ay = -ale^+e
«j, (lo)

which is the usual form of the equation to the catenary when
the directrix is the axis of x, and the origin under the lowest

point ; also, a is the constant which would in mechanics rep-

resent the tension in the direction of x.

60. We have already seen how to dispose of the constant

3 which occurs in the general solution, and we now proceed
to consider the remaining constant a.

It must be evident that even when the limiting values of

X and / are given
—

just as when they are not—it may happen
that no constants can satisfy the given conditions; that is,

that no curve of the required kind can be drawn between the

given points. Let us first suppose that the two points are

equally distant from the axis of x, and let x^ = c and y^ = d.

Then (10) gives

and from this equation ti must be found in terms of c and d.
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But we are chiefly concerned in knowing when, if at all,

the solution will become impossible ;
and this point we will

now consider. If we differentiate the second member of (ii)

under the supposition that c is constant and a variable, and

then equate the result to zero, we shall obtain, on solving, the

values of a expressed in terms of c, if any exist
,
which will

render b a minimum. Performing this operation, we have

ij^+ ^~«)---(^-^"«)
= o. (12)

Developing each term of (12) carefully by Maclaurin's Theo-

rem, we have

-etc. = 0, (13)2a \4 a

an equation which evidently gives but one positive value for

a^ because its first member is — 00 when a is zero, and unity
c

when a is infinite. But (12), when solved for —
,
is known to

a

c

give approximately - = 1. 19968 = d, which evidently renders

b a minimum, as it is clear from (11) that we can make it in-

finite by making a infinite. To determine this minimum value

of b in terms of c, first substitute in (11) thus:

' =
;("+?)•

which, being solved, is known to give approximately

-= 1.81017. Therefore we have -= 1.5088.
a c

Now as this equation gives the least value of b in terms of

^, it is evident that if the extreme points be so given that —

will be less than 1.5088, there can be no catenary drawn hav-
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ing the axis of x as its directrix, although of course some

catenary can always be drawn
;
and if — become equal to

1.5088, then a single catenary can be drawn in which a must

equal or -—
;
and if - become p^reater than^

1. 19968 1.81017 c
^

1.5088, then two real and positive values can be found for a,

and we may, by using each in succession, draw two catenaries

between the two given points, each having the axis of x as its

directrix.

61. As it will be found highly important, in determining
the question of their minimum property, to distinguish be-

tween the upper and lower catenary, we must now also con-

sider the more general case in which j/^ and j/^ are unequal.

Suppose, then, that the given points are unequally distant

from the axis of x, x being so estimated that j/j shall be greater
than j^p. Then move the origin along the axis of ;ir to a point

midway between the ordinates j/q and j/^. Denote j^^ by d,

y^ by kj x^ by c, and x^ by — c. Then n being the distance

of the new origin from the former, and of course positive, the

general equation of the catenary becomes

(I)

Hence we have at the limits the equations

/ c + n c+ n\

b=z^le'^+e ^y (2)

(n

— c n — c\

e~^+e ^j.
(3)

From these equations we must now find a and n. Mul-
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c _c

tiply (2) by e^ and (3) by e ", and subtract
;
then multiply (2)

_c c

by e ^, and (3) by ^, and subtract. Then we shall have the

two equations

n / 2c _ 2c\ c _ c

^ ^ / ^« — ^ a \ = ^^ _ i^ a^ (4)

n / _ 2c 2c\ _ c c

Changing signs in (5) and multiplying by (4), we have

2c 2c\ 2

-ie'^ — e "\ = ibt^ — ke ''\ ik(^ — be "
!.

(5)

(6)

Having thus eliminated n, we must now determine whether

(6) can be satisfied by any real and positive value or values

of a. Write, for convenience,

2 / 2c _?£\^ / c _9\ / £ __c\
F^-ie'^—e ^\ — ib^ — ke "A ik^ — be ^\ {?)

which becomes zero whenever a catenary is possible. Differ-

entiating F under the supposition that a only is variable, we
obtain

dF_ C 2c
_2c^

l(,l_,-?)-.(J+.-l)
+

!^^|.

Now if F' can vanish for any real and positive value of a,

F has a corresponding minimum value or values. For it has

its greatest when a is zero, its value then being infinite. For
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if we develop by Maclaurin's Theorem the first member of

the following equation, we shall have

.i(,l-.-l)..(,+f-^+$:^_+e..).

Whence, when a is infinite, i^ becomes 4^" + (<^
— ky ;

and when
a is zero, F becomes infinite.

Now to determine whether F' can vanish and change its

sign as a ranges from zero to positive infinity, we must
2c _2c

recollect that e^ — e " is of invariable sign, and that therefore

the only part of F' which can change its sign is the second

factor, and this, when developed by Maclaurin's Theorem
and arranged, becomes

2 c\ ^ -zz^ [^ ~\- etc
2V*

/ji_ i_\ (9)

Now if hk be greater than —
,
we can evidently make (9), and

consequently F'
,
vanish and change its sign once, and once

only, for any real and positive value of a
;
and therefore F is

in this case susceptible of a minimum value; and if this mini-

mum value be negative, F can be made to pass through zero,

and to change its sign twice. Hence in this case equation (7),

or i^= o, can be satisfied by two real values of a\ and we can

draw two catenaries by using these values successively. But

if the minimum value of F be zero, F can touch zero but once,

and (7) can only be satisfied by one value of a^ and thus we
can draw but one catenary. If the minimum value of F be

positive, then F cannot become zero at all, and (7) cannot

be satisfied by any real and positive value of ^, and thus no

catenary can be drawn.
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Now if bk be equal to or less than —
,
F' will be always

3

negative, and F can consequently have no minimum value.

In this case F cannot touch zero at all, and there can be no

catenary. For we have already seen that the least value of

/^ is 4^'+ (/^
—

kf, which expression is evidently greater than

zero.

62. The preceding article is taken from Chapter IV. of

the Adams Essay, by Prof. Todhunter
;
and we shall now,

before closing this section, subjoin an investigation of the

terms of the second order in a particular class of problems,
in which Probs. VI. and VII. are included. This investiga-
tion appears to be due entirely to the same author. (See
Adams Essay, Arts. 26, 27.)

Problem VIII.

It is required to investigate in full the conditions which will

maximize or minimize the expression

wheref is any function ofy' only.

Put f for ^, and f" for ^. Then, to the terms of the
ay dy

second order inclusive, we shall have

+ \Ly^f'^y ^y ^yf"^y'')dx, (I)
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Here Fis a function of y and y' only, and P=yf', so that we
have at once, by formula (C), Art. 56, since the terms of the

first order must vanish,

yf-yy'f = ^- (2)

This is as far as we can carry the general solution, so long
as the form of / is entirely arbitrary, although we may sup-

pose the solution to be of the form

y = F{x, c, c').

63. Let us now consider what transformations can be

effected in the terms of the second order. By parts we have

ff'dy Sy'dx =f'6f -JSy .

^J'Sy.dx. (3)

But

Whence

JfSySy'dx =f'Sf -ff 6y Sy'dx
-/^ 6/dx. (4)

Therefore

2ffSy Sy'dx = f'Sf-/^ Sfdx. (5)

Substituting this value in (i), and observing that the terms of

the first order vanish, and that -^ = f"y\ we have
ax

6U =
l[f:Sy,^

-
f^Sy,") +L£'(_yf"s/'

_
y"/"Syjdx. (6)



SPECIAL DISCRIMINA TION OF MAXIMA AMD MINIMA, 79

But if we suppose, as usual, the values of y^ and j, to be as-

signed, we have

^U=-rf\ySy'^-/Sfyx. (7)

Now in our applications of this formula we shall usually be

able to regard y as positive ;
arid let us also suppose that y"

does not change its sign within the range of integration ;
that

is, that the required curve is always, at least for the part that

we consider, convex or concave to the axis of x. We will

consider first the latter case. Here, since y" is always nega-

tive, the factor ySy — y"Sy^ is always positive, and therefore,

\i f" be also of invariable sign, we shall have a maximum or a

minimum acording as it is negative or positive.

But we can show that when y" is of invariable sign, f"
must be also. For from (2) we have

y-j^r («)

Whence, by differentiation, we have

and solving for y\ we find

which shows that when y" is of invariable sign, f" must be

also. But since c may be either positive or negative, the sign
of f" cannot be determined so long as the problem is per-

fectly general, and therefore we can only say that when y" is

negative, we have a maximum or minimum according as f"
is negative or positive.
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Next suppose y'^ to be always positive. Then, although

f" must be of invariable sign, we cannot say that the factor

ySy^ -.ySy" may not change its sign; and therefore this case

will require further investigation, which will be given here-

after, when we have presented Jacobi's Theorem.

64. We will now apply the preceding formula to the in-

vestigation of the terms of the second order in Prob. VL,

although we did not succeed in obtaining the equation of

the generating curve in finite terms.

From equation (9), Art. 58, w^e easily obtain

Now we will consider the case in which y' is positive and

of invariable sign. Then, observing that tan^ 60° = 3, we see

that if y be always less than 3, y'^ will be always negative ;
if

y pass through '^, y" will change its sign; and if y^ be always

greater than 3, y" will be always positive. Hence we may in-

vestigate the first case. Write the fundamental equation of

Art. 58 thus:

Then we find

and

,'2

/"=2y 3 y"

Hence, if we suppose the limiting values of x and y to be fixed,

the terms of the second order will become
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which expression is evidently positive, thus giving us a mini-

mum.

65. The term minimum must here also be understood in

its technical sense, and we must by no means say that the

curve whose differential equation we have obtained is the

curve which will generate the solid of least resistance. For

Legendre has shown that by taking a zigzag line we can

make the resistance as small as we please. The fact is that in

this case, as in every other, we can, by means of the calculus

of variations, compare the curve or curves obtained from the

differential equation J^f = o with such curves only as can be

derived from their primitives by making infinitesimal changes
in the values of y and y' , And although we might pass from

a continuous curve to a zigzag line by means of infinitesimal

changes 'v;\y^ we certainly could not by such changes in y.

Section III.

CASE IN WHICH THE LIMITING VALUES OF X ALSO ARE
VARIABLE.

Problem IX.

^^, Suppose it be required to find the shortest curve which caji

be drawn so as to connect two given curves, all the curves lying in

the same plane.

Let ff and gg be the given curves, and ab the required
curve, which is of course a right line. Then if we assume
two other points, c and d, indefinitely near to a and b, and join
them by another curve which is of the same kind as, or

differs infinitesimally in form from, ab, the curve cd must ex-

ceed in length the curve ab.
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This assertion would be equally true if the points a and c,

b and d had not been taken indefinitely near, and if the curve
cd had not differed infinitesimally in form from ab. But then,

even if cd were shown to exceed ab in length, we could not

be certain that some third curve might not be drawn be-

tween ff and gg differing less in form from ab, or having its

extremities a little nearer to a and b, which might be shorter

than either ab or cd.

Now since, whatever be its nature, the length of the line

ab is given by the equation

u= n vT+y^ dx = r^ vdx,

we see that we are now required to determine what change
U undergoes when not only y\ but also the co-ordinates

x^, j/q, ^1, Jv of the points a and b, receive indefinitely small in-

crements.

Now it is evident that we may pass from the curve ab to

the curve cd in the following manner: First, without at all

changing the form of ab, give indefinitely small increments

dx^ and dx^ to the original limits x^ and x^, so that the new
values of these limits may become the abscissas of the new

points c and d, which change would give to the curve ab an

increment like that which it would receive by differentiation.

Then, secondly, vary y, supposing x throughout the new
limits to be incapable of variation. By the change in the
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limits we obtain the required abscissas of the new extreme

points, while by varyingy we obtain their ordinates, and also

any desired alteration in the form of the primitive curve.

Now if we denote by U' what f/ becomes when we change
x^ into x^ -\- dx^y and x^ into x^-\- dx^, the form of the primitive
curve being unchanged—that is, y and y' being unvaried—we
shall have

U'= / ^^ Vdx
t/xo-\-dxQ

Pxj pxi+ dx, /^Xo + dxo

in which expression it must be remembered that the incre-

ments dx^ and dx^ are to be taken either positively or nega-

tively, according as the abscissae of the new extreme points
are further from, or nearer to — 00 than those of the original

points. But it is evident that to the second order

p^i+dxi J f^y\

i. F^-=F.rf.,+
i(J^|^.r-

(2)

and making the same reduction for the lower limit, (i) be-

comes

/"=^.-'.-''-'"-+j|©,'"'-{S.*-l

+.r "''-' (3)

which is true to the second order.

Let us next ascertain, as far as the terms of the second order,

what change would result to U^ from changing y^ into y' -{- 6/.
Smce the integral in (3) equals U, the change which will re-

sult to it will be merely SU, where SU is to be found to the
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second order, and the terms of the first order transformed as

hitherto explained, so that we need only consider the terms

without the integral sign. The change in the term V^dx^, prol
duced by varying j/, dx^ remaining unaltered, is ^V^dx^, which,

if we put as usual Pfor 4=, becomes

the first term only being retained, as the others are evidently
of an order higher than the second

;
and similarly for the cor-

responding term at the lower limit. The term —[-—-] dxJ^
2\dx U

is already of the second order, and must simply be retained

without regarding its variation, every term of which would
be of an order higher than the second. Similarly, we merely
retain the corresponding term at the lower limit.

Now collecting our results, and denoting by {pUI the

entire change which the length of ab or U has undergone, we
shall have

\S C/] = V, dx,
- K dx,+ />, Sy,

-
/>. Sy, +fjj-

~ Sy dx

I /*^1 I+-Xp<^/V^. (4)

67. Now it will appear, by reasoning in all respects similar

to that which has been hitherto employed, that since dx^ and

dx^, like Sy^ and ^y^, are capable of either sign, if U is to be a

maximum or minimum, the terms of the first order in \pU^^

must vanish, and those of the second must become positive
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for a minimum and negative for a maximum. Disregarding,

therefore, at present the terms of the second order, we have

lSU^ = V:dx,-V,dx,+ P,Sy^-P,dy^+J^^
-
^dy dx. (5)

Now it must be evident that the curve sought can be no

other than a straight line. For suppose the points a and b to

be joined by any curve other than a straight hne. Then even

if this curve were shorter than any other Kne which could be

drawn between the given curves, when one or both the ex-

treme points a and b were changed, yet we know from our

previous investigations that, without changing these points,

it could be still further shortened by making it a right line.

Whence we see that our present problem must concern merely
the position which this line must have in order to render its

length a minimum. Moreover, the term under the integral

sign in (5) is just what it would have been had we merely re-

quired the curve of minimum length between two fixed points.

dP
Therefore, since the right line is the general solution, —- will

dx

vanish, and consequently the integral must vanish, thus leav-

ing us with the terms at the limits, which must also be equated
to zero.

This mode of demonstration will probably be most appa-
rent, but the following is the true analytical method. By rea-

soning similar to that employed in Art. 39 and the preceding
articles, we can show that the term under the integral sign
must vanish, as must also those free from the sign of integra-

tion, taken collectively. Equating the integral to zero, we
obtain, as before, the right Hne as the general solution, and
have then to consider the remaining terms, which may be rep-
resented by the equation L—o.

68. We have, then, from (5),

L == V,dx,
-

V^dx, -^P,6y,
-

P,dy, = o. (6)
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Now if the quantities dx^, dx^, 6y^^ dy^ were entirely indepen-

dent, we would evidently be obliged to equate the coefficient

of each one severally to zero. Then we would have four

equations at the limits to be satisfied, whereas the general
solution contains but two arbitrary constants, and this would

usually be impossible in any problem. But in the present
case we know, without further investigation, that two of these

equations, V^^o and V^ = o, cannot be satisfied by any real

value of y. This is as it should be. For if the quantities ^;i:,,

dx^, ^jj/j, (5>o were independent, the extremities of the required
curve would be entirely unrestricted, and we could have no

maximum or minimum, because we could always increase

or diminish its length at pleasure. But as in the present case

the extremities of the required curve are confined to two

given curves, we can obtain a definite result, and we now

proceed to show the method of imposing this condition upon
the question.

69. Let y —f{^) and y = F{x) be the equations of the two

given curves, and let y be any ordinate of the required curve,

and Y the ordinate of the derived curve corresponding to the

same value of x. Then Y^=y^-\-Sy^, 2ind Y^=iy^-\- dy^] and

let us consider, for example, the upper limit. It is evident

that when we derive cd from ab, the abscissa of d will become

x^ -\-dx^, where dx^ may be positive or negative, and the value

of its ordinate is evidently obtained by passing along the de-

rived curve from the point whose co-ordinates are x^ and F,

to the point whose abscissa is x^ -\- dx^ ;
that is, to the point d.

Denoting then the ordinate of d by n, we have

n=Y,+ Y,'dx,-^- Y," dx^+ etc. (7)

Hence, substituting in (7) the value Y^=y^-\-Sy^^ and omit-

ting all terms of an order higher than the second, we have
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n = [y-\-dy -\-y'dx+ dy'dx+ - y"dx^ (8)

But since n is an ordinate of the given curve whose equation
is Y — f{x), we must have n^^ f{x^-\- dx^. Developing this

expression by Taylor's Theorem, we have to the second order

«=/,+/.'^-^. +
j/.V-^-A (9)

where

/'=£' /"=S' ^-^(^-^

Combining (8) and (9), observing that_j', =/„ we have

*/. = (/' -/). dx,+ i(/" -/). dx^ - 6y:dx, (ID)

Similarly, we have at the lower limit

Sy, = {F'-y'\dx,-\-^-{F"-y\dx;-6y:dx,. (10)

70. If now we substitute in (6) the values of Sy^ and dy^

just found, and set aside all terms of the second order, which

must be added to those of the second order in (4), we shall,

after restoring the values of V and P, have

y'f'-y'^ =
^-^TT7+^'+^"1^^.

Having thus eliminated Sy^ and Sy^, it is evident that the

remaining quantities dx^ and dx^ are absolutely independent,
and that we must therefore equate their coefficients severally
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to zero. Performing this operation, and reducing, we have

the equations

I \-ylf! = o, and I + y.'F: ^ o
;

equations which show that the required right Hne ab must be

normal to each of the curves ff and gg.

71. Although for the sake of simplicity we have used

equation (6), it is evident that the true mode of reasoning
would be the following: First eliminate Sy^ and Sy^ in (4) by
the use of equation (10), by which elimination we shall add

some terms to those of the second order. Then, by the usual

reasoning, those of the first order must vanish. But these

terms will then consist of L as given in (11), together with an

integral; and, by the reasoning already employed, these two

parts must separately vanish. Now by making the integral

vanish, we obtain the right line as the general solution
;
while

by making L vanish, we obtain at once equation (11), from

which we derive the same conclusion as before.

72. If we use equation (6), recollecting that it is true to

the first order only, we may evidently obtain the complete

terms of the second order by adding to those already in
(4)

those which result from the elimination of Sy, and Sy^ in (6)

by the use of equation (10). But these terms will by either

method become, since those of the first order vanish,

^Jx, 2(1 +y^)^
-^ ^ '

Now the integral in (12) is known from Prob. I. to be posi-

tive, so that we shall be sure of a minimum if the remaining
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terms be positive, but not otherwise. But since the solution

y'
is a right line,

—-^ is a constant, say c, and these terms
1/1 +/'

become

[f:dx:

But c is the sine of the inclination of ab to the axis of x, and

we may therefore so assume this axis as to render c positive,

and then we shall be sure of a minimum if f" be positive

while F^' is negative.

73. But it is unnecessary to pursue this investigation fur-

ther. For it must now appear that the problem under con-

sideration is one rather of the differential calculus than of the

calculus of variations. For since we know from Prob. I. that

the right line is the plain curve of minimum length between

two points, whether they be situated upon given curves or not,

we might have been certain beforehand that the solution could

be no other curve than the right line, and that our problem
could concern nothing but its position. Moreover, its posi-

tion being determined, we need only compare the line with

other right lines drawn to points on ff and gg consecutive to

a and b. For if we vary ab so as to obtain a derived curve,

cd, which is not exactly a right line, then, even if we show that

ab is shorter than cd, we could shorten cd by making it a

right line, its extremities remaining unchanged, and could not

without a new comparison be certain that the new line cd

might not be shorter than ab.

The problem might then have been enunciated thus : To

find the position of the right time of miiiimtun IcngtJi which can be

drawn between two given plane curves.

74. Although problems of this sort might be altogether
omitted here, there appears

—at least so far as the terms of the

first order are concerned—to be some advantage in solving
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them by the calculus of variations instead of by the ordinary
methods of maxima and minima. At all events, they are gen-

erally discussed by writers on this subject, and it is deemed

necessary to render the reader familiar with the methods
which they employ. We shall therefore subjoin a few more

problems of the same kind, considering the terms of the first

order only, since a discussion of those of the second would in

general be unsatisfactory.

Problem X.

76. It is required to determine both the nature and position of
the curve which will minimize the time of descent of a particle

from one given curve to another, the particle startingfrom a fixed
horizontal line, and being acted upon by gravity solely, all the curves

lying in the same plane.

Assume the fixed horizontal line as the axis of x, and let

x^ and Jo be the co-ordinates of the point in which the required
curve cuts the upper of the given curves, while x^ and y^ are

the co-ordinates of the point in which it cuts the lower. Then,

reasoning as we did in Prob. II., we see that we have to min-

imize the expression

Now it is clear that here, as in the preceding problem, the

limits of integration will be also subject to variation. For

suppose that after the required curve and its points of inter-

section with the given curves have been found, we assume

points on the given curves consecutive to those just found,

and then connect these new points by another curve. Then

the abscissse of these new points will be x^+ dx^ and x^ -\- dx^,

dx, and dx, having either sign. It also appears, as before,

that the total change which U will undergo, both from a
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change in the form of the curve and an alteration in the posi-

tion of its extremities, can be found by first changing the

Hmits of the integral in such a manner that the new limits

may be the abscissae of the new points, while the form of the

curve remains unaltered, and then changing by the ordinary
methods of variations the form of the curve taken throughout
the new limits. By the change of limits only, U becomes U'

,

where U' is given by equation (i) of the preceding problem,
because that equation will hold irrespectively of the form of

V. Then if in U' we change y into y -\- ^y, and y into y'-\- Sy\
and subtract W, we shall have the exact value of [^U']y to

which, however, we can onl}^ approximate. This approxi-

mation, so far as U' is concerned, is effected as in equations

(2) and (3) of the last problem, which also hold irrespectively
of the form of V. If now we take the variation of W^ in the

usual way, we shall have first the terms <^V^dx^
— SV^dx^,

which are evidently of the second order and must be rejected
unless we are developing [<^U'] to the second order, when

they must be added to those involving dx^'^ and dx^"". Next we

obtain d6^ or / 'dVdx, where c^^ is to be developed to the

first or second order as required, and the terms of the first

order transformed as in the case of fixed limits. Hence to

the first order we shall have

[d ^] = V, dx,
-

V, dx,+ P'd Vdx,

which equation would evidently hold irrespectively of the

form of V.

But as in the present case F contains jk andy only, if we

put as usual N for -— and P ior —-, and then develop dF to
ay dy

^

the first order, and transform as usual, we shall have

[SU^ :=
V, dx,~ V, dx.+Pfy-Pfy^^^'^' I

^V - g [
Sydx. (I)
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76. Now it will be remembered that the relation expressed
in either equation (lo) of the preceding problem, not having
been established upon any particular supposition, is true what-

ever be the equations of the limiting curves. In this case,

therefore, if we assume j —f{x) and y — F{x) to be the equa-
tions of the two given curves, we can eliminate dy^ and dy^^

the terms of the second order which result from the elimina-

tion being added to those already existing, or else being re-

jected if terms of the second order are not to be considered.

When these terms are to be neglected, equations (lo) are

better written

^y. = (/-/). ^^. ^lo = {F'-y%dx,. (2)

Performing this elimination, we have

[cJt/] =. (^v+P/'-P/\d.r- {V+PF'-P/ldx„

Now having equated the terms of the first order to zero, it

will appear that, as the integral cannot be made to depend

upon terms which relate solely to its limits without in some
manner restricting the generality of the function dy, we can

only satisfy the equation ldU']=o by equating the integral
and the terms at the limits separately to zero.

It will be seen from (3) that [^ U] and (5^^ differ only in the

terms at the limits, the integrals being identical, and this would
be the case if F were any function whatever of ^, y, y\y", etc.

Hence if we make the integral in (3) vanish, it must lead to

the same general solution as though we had been discussing
the problem of the brachistochrone between fixed points, and

therefore the general solution must be a cycloid.
It is clear, also, that if dx^ and dji\ be entirely independent, as

they are in this case, we can only make the terms at the limits
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certainly vanish by equating severally to zero the coefficients

of these quantities. Performing this operation, and substitut-

ing the values of V and P, we obtain for the upper limit

x/:^zi_+i^i±z:Uo,

whence by reduction we have

and in like manner^ at the lower limit, we find

equations which show that the cycloid must cut each of the

two given curves at right angles.

77. We see, then, from the preceding examples, that if

we wish to determine the conditions which will maximize or

minimize any single definite integral in which the limits

also are to be subject to an indefinitely small change, we
have merely to put the integral, if possible, under the form

U^^ I ^Vdx, F being some function of x, y, /, y\ etc., and

then, if the general solution be known in the case in which

the limits are fixed, we need only consider the terms at the

limits, as the general solution will in every case be the same,
whether the limits be fixed or variable. Moreover, if we wish

to consider the terms of the first order only, the terms at the

limits in \SU^ =0 Avill be identical with those which occur in

SU —o, with the addition of the terms V^dx^— V^dx^. Then if

no restriction be imposed upon the quantities dx^, dx^, Sy^, Sy^^

the coefficients of these quantities must be equated severall}^
to zero. This would give us, in addition to the usual 2n con-

ditions, Fj^r o and Fo == o, equations which, as we have already

seen, could not in general be satisfied, as we would have
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2n-\- 2 equations and only 2n arbitrary constants. But when
the extremities of the required curve are restricted to two

given curves, we can eliminate Sy^ and ^y^ as already shown,
and thus the number of ancillary equations is reduced once

more to 2n.

Problem XL
78, It is required to determine the conditions which must hold

at the limits^ when in Prob. III. we also demand that the required
curve shall have its extremities upon two given curves.

Assume, as before, the differential equations of the curves

to be dy =f'dx,dy := F'dx. Then, following the last ar-

ticle, we neglect all terms except those at the limits, since

the general solution is known to be a cycloid. Here
(r\ .i;^2\2

V=-— ~^
-—

,
and the terms at the limits, as will be seen

y
from Art. 30, will, after adding V^ dx^

—
V^ dx^, become

_ /4/(i +/') , A ('+/T\ s^

But from equation (11), Art. 30, we have

4/(1+/")
I

^ (i+ZT ^ ,

/'
'^ dx f

Moreover, we shall assume that the cycloid has cusps at the

points whose co-ordinates are suffixed, in consequence of which
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y" will become infinite, and the terms in (i) which are divided

\yy y" will vanish. Hence (i) becomes

L=- c{py,
-

Sy,) = o. (2)

But ^y^ = {f'
—

y')xdx^, ^y^ — {F' — y')^dx^, and substituting
these values in (2), and equating severally to zero the coeffi-

cients of dx^ and dx^^ we have

f:-y: = o, F:-y:=o.

But yl and y^ are equal, because the tangents to the cycloids
at its cusps are parallel, and therefore the quantities jr/, y^,

//, F^ are equal. Hence we conclude that the chord joining
the two cusps of the cycloid must be normal to each of the

given curves.

Problem XII.

79. // is required that the generating ctirve in Prob. VII. shall

have its extremities upon two given curves.

Let the equations of the given curves be as in the preced-

ing problem. Then V= y Vi +y^ and the terms at the limits

become

L = {yVi +y\ dx- (y Vi +y\ dx,

_|_ (^Z_\ sy^
_ / /'^' \ dy^ = a (I)

Eliminating Sy^ and fy^ as before, we have, after equating to

zero the coefficients of dx^ and dx^.
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Whence reducing, we have

which show that the catenary must cut its limiting curves at

right angles. •

Section IV.

CASE IN WHICH SOME OF THE LIMITING VALUES OF X, Y, V,
ETC., ENTER THE GENERAL FORM OF V.

Problem XIII.

80, // is required to determine the nature and position of the

curve down which a particle will descend in a minimum time from
one given curve to another, all the curves being in the same vertical

plane, and the motion of the particle beginni?ig at the point of its

departure from the upper curve.

Assume the axis of y vertically downward, and let x^, y^,

x^, j/j be the respective co-ordinates of the initial and terminal

points of the motion, and let the differential equations of the

respective curves be ^ = F'dx, and dy =/V;r. Now in this

case the velocity of the particle at any point whose ordinate

is y will be \^2g{^y
—

y^, because the motion begins at the

point whose ordinate is j,. Therefore in this problem we
must minimize the expression

U^r^±£^dx=rVd:c. (I)
t/xo yy — y t/^o

Although it at once appears that the limits x^ and x^ will

also be subject to change in this problem, we see that one of

these limiting co-ordinates, jf,,,
enters likewise as a component

part of F throughout the integral, and this fact will require



BRACHISTOCHRONE CONTINUED. 97

some modification of our previous method of solution, because,

since y^ is a component of F, any change in the value of /„ will

produce a change in that of V throughout the entire range of

integration. Moreover, the co-ordinates at the lower limit

must always satisfy the equation y^ = F(x^y so that when
we change x\ into x^ -\- dx^, we necessarily change y^ into

F{x^ -|- dx^. It happens that V is not affected by any change
in the values of the other limiting co-ordinates, as they do not

occur in V\ but if they did, the method of treatment .would

be similar to that which we are about to explain for y^.

Now let V be what V becomes when we change y^ into

J^o+ '^o) ai^d we shall have, from the change of limits only,

U'= / V'dx, (2)

If we next change j/ into j/ + ^J> ^^d y' intoy-^ Sy\ and sub-

tract U orJ Vdx, the result will be the exact variation of U,

to which we will now approximate as far as terms of the first

order only. As before, to the first order, (2) becomes

U'^ V/dx- V:dx,+ r V'dx, (3)

Now when we change x^ into x^ + dx^, we to the first order

change y^ into y^ -(- F^dx^, and therefore V is what V becomes
when we change y^ mto y^ + F^dx^, y and y' in V being re-

garded as constant, since they in no manner depend upon y^ ;

and this change in V will evidently be -— F^dx^, where F^dx,
dy,

has simply been put for dy^. Hence to the first order,

^'=^+^^.''^-.- (4)

Substituting this value in (3), rejecting again all terms of the
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second order, and observing that F^' and dx^ may be regarded
as constants, we have

U'^ K dx,- K dx,+F:dxX'^- dx +y"' Vdx. (5)

If now we vary y and y' ,
we shall obtain the variation of

/ Vdx or U in the usual manner for fixed limits, while the

variations of all the other terms must be neglected, being of

an order higher than the first. Hence putting N for —-,

Pfor -—
,
we shall have, after the usual transformation of SU,

ay

[<J£/]
= F. dx,

- K dx,+ Pfiy,
-

Pfiy,+
FJdxJJ^'^

dx

But — = = —
TV, as will readily appear from the form

dy, dy
of V given in (i), so that we have

\SU-\ = V,dx- V,dx,-\-Pfiy- P,dy- FJdxJJ^dx

-{-fJ'M dy dx
= o, (;)

dP
where M— N . Now whether we can integrate the ex-

dx

pression JJ'Ndx or not, we know that it is merely a function

of the limiting co-ordinates and their differential coefficients,

the form of the integral being dependent upon the nature of

the general solution obtained by making the second member
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of (7) zero, and it is not, therefore, in our power. Hence, by

the same reasoning as before, we must have J^
M Sy dx = o

and M—o.
As we have merely assumed that the axis of y shall be

vertical, we may take that of x so as to make y^ zero, in which

case the equation M—o will become identical with the same

equation in Prob. II., Case 2, and the general solution will

therefore be a cycloid
— which solution will evidently also

hold however we assume the axis of x^ since by changing
that, so long as that of y is vertical, we change neither the

form of the curve nor the values of any of the differential co-

efficients of y. The general solution then being a cycloid with

a cusp on the upper curve, we must next, if possible, satisfy

the equation

\d U^ = F, dx,
-

V, dx,+ Pfy^ - Pfy, - F:dx, r^Ndx = o. (8)

dPNow in this case the equation M= o gives N= —
-, where the

differential is total. Hence

- F/dx,£l'Ndx
= - F:dx, (P,

-
p.). (9)

Now substitute this value in (8), and next eliminate Sy^ and

Sy^ by equations (2), Art. ^6. Then equating to zero severally
the coefficients of dx^ and dx^^ we have

v,-^pj:-p,y:=o, (10)

v,^p,F:-p„y:=o. (II)

Since the general solution is a cycloid, we have, from the

equation _>^(
I +y^) = ^ of Art. 25, by putting j—jTo for j.

^U — 7o) (i +/') ^^a ^ V2r.
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Substituting this value in (lo) and (ii) after having restored

the values of V and P, they become after reduction

equations which show that the cycloid cuts the lower curve

at right angles, while, since // = /^/, the tangents of the two

given curves at the initial and terminal points of the motion
must be parallel.

81. We have seen that when a particle starts from a state

of rest, the cycloid must have a cusp at that point. But if it

is to start with a given initial velocity in the direction of the

tangent, which velocity could always have been produced by
faUing from some height //, Fin Prob. II., Case 2, would be-

come

\^y + //

If, as usual, we obtain the differential equation

dP
ax

we can evidently, while keepings vertical, remove the axis of

X to the height h above the initial point, without affecting the

form of the curve given by the equation M — o. But making
this change, y -{- h will become jk, and J/ will become identical

with M in Prob. II., Case 2, thus giving us a cycloid with its

cusps upon the new axis of x. That is, when the particle

starts with a given tangential velocity, the curve of quickest

descent, or the brachistochrone, will still be a cycloid, but

having its cusps upon the horizontal, from which the particle
must have fallen in order to acquire the given initial velocity

upon reaching the starting-point.
In like manner, in the last problem, if we require the par-
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tide to start from the upper curve with a fixed tangential

velocity, due to some height h, V will merely become

and no change will be effected in the results of the last article,

except that the cycloid will no longer have a cusp upon the

upper curve, but its cusps will then be upon the horizontal

whose distance above the upper intersection is /i.

82. As examples of the kind discussed in the preceding

problem are not numerous, we shall, as a means of more fully

developing the method therein explained, now examine the

terms of the second order.

For greater simplicity, change .the independent variable,

assuming the axis of x vertically downward ;
and for greater

generality, suppose the particle to start from the upper curve
with an initial tangential velocity due to the height /i. Also
let the equations of the curves he f = ^W = ^ for the upper,
and f — f{x) — fior the lower, while x^, y^, ^^, f,, are the co-

ordinates of the initial and terminal points of the motion.

Now we shall have

Let F' be at once what V becomes when / is changed into

y + ^/y and X, into x^ -\- dx,. Then we have

'

[^^] =X+<.. ^'^- -X ^^-' (0

which is exact ; and we will now approximate to the second
order. We have
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J..,
dV

,
dV r

For brevity, let A denote all the terms of the first order ex-

cept F, B those of the second, and C their sum. Then (i)

becomes

px-i^+ dxx f*Xy pxi + dxi

['^^]=X+ ... Vd.-l^ Vd.^l^^^^ Cdx. (3)

But, as formerly, the first integral in (3) gives

F.^..-F,^..+
l{f)_^./-l(g')^^.;

+ XV^.. (4)

Moreover, neglecting terms of an order higher than the

second, the last integral in (3) becomes

nx^ + dx^ nxi

l+...^d.-^lBd.. (5)

Also to the second order

nxi + dx^ pxi
/ ,^ Adx = A,dx^-\-A,dx,-\- Adx. (6)

JxQ-\-dxQ
^ ^ ' ° ° '

t/Xo
^ '

Hence, finally, we have

+A,dx,-A,dx,-\-£ydx. (7)

Restoring the value of A, transforming by integration, as
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usual, the term / '-^, Sy'dx, and then eUminating dy^ and Sy^
*^^o ay

by equations (10), Art 69, we have

'+(f)y'-^).''--(f).('---'V^.+^.rj^'"

+£'BJ.. (8)

Making the terms of the first order vanish, we shall, as before,

obtain the cycloid as the general solution, and it will be sub-

ject to the conditions already explained. Then [^f/] will

consist of the terms of the second order only, which must
become positive if the solution give a true minimum. As the

terms in Sy cancel, we shall have

V +£'^^^- (9)
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Now we cannot render it evident that this value of \pU'\ is

necessarily positive, nor will any of our subsequent investiga-

tions afford us the required assistance, there being no known
method apphcable. Therefore, although the great Legendre

erroneously supposed that we were sure of a minimum, we
cannot in fact be certain of its existence in every case. (See

Todhunter's History of Variations, Arts. 202, 300.)

83. When V contains several of the quantities x^, jKo, y^,

x^, y^, j/, etc., the expression for [_SU'] becomes somewhat

complicated. But as we know that to the first order the

change which any function undergoes from an indefinitely

small alteration in any of its components may be found by

considering each change separately and then taking their

sum, we may, as Prof. Jellett has suggested, use this method

with advantage here, as we shall not require the terms of the

second order.

Suppose, then, that we have to maximize or minimize the

expression U — j Vdx, where F is a function of x, y, y', and

also some of the limiting values of these quantities, x^ and x^

being subject to change into x^ -\- dx^ and x^ + d^\- Fi'on^ the

change in x^ alone, supposing the other quantities could re-

main unaltered, U will be increased by V^ dx^
—

V^ dx^. From

varying y, /, etc., V would be increased by -1- ^y ~\~ ~ri ^y' H~

etc., or 6V, and U would therefore be increased by J^ SVdx.

Lastly, by the alteration in the limiting quantities which enter

it, F would, throughout the entire range of integration, be in-

creased by^ dx, + ^(3j/, -f 4^ (5>/+ etc., and the same for
•^

dx, dy^ dy^
the lower limit. Calling this change S' V, U is increased by

J d' Vdx. Adding these results, we have
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\SU^ = V,dx, - VJx,+ £y'Vdx +£yVdx = o. (I)

Now the last integral in (i), being transformed as usual,

will give us, besides certain additional terms at the limits, a

differential equation M = o, and this equation will be the

same in form as though V had not contained any of the limit-

ing components. Hence the general solution will be the

same as though Khad not contained these quantities, and the

limits also had been fixed. Then, by using this general solu-

tion, we must if possible, by definite integration, express the

remaining integral in terms of suffixed quantities, our power
to complete the solution being dependent upon our ability to

remove this integral sign. After this has been done, we dis-

cuss the resulting limiting equations as we would in any other

case.

Section V.

CASE IN WHICH U IS A MIXED EXPRESSION; THAT IS, CON-
TAINS AN INTEGRAI, TOGETHER WITH TERMS FREE

FROM THE INTEGRAL SIGN.

Problem XIV.

S^. // is required to maximize or minimize the expression

U = /"""y^dx= r^ Vdx,

Here Fis a function of y, /, y\ whence, by formula (A),
Art. 56,

v=c+py+Qy-y^, (I)

and
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Hence (i) gives

and, by integration,

y^^cx^d. (3)

Now the terms at the upper Hmit are

(^-fh + a^^'-

and similar terms at the lower limit, so that unless some re-

striction be imposed upon the independence of Sy^^ 6y^, Sy^\

and SyJ, there will be four limiting equations to satisfy, while

the general solution contains but two arbitrary constants, and

this will in general be impossible.
But the above example, containing the first power only of

y", the highest differential coefficient in F, is, as will be re-

membered, a case of Exception 2, Art. 51. . It will also be

remembered that it was shown by Euler's method, equation

(8), Art. 52, that all such integrals can be reduced to a lower

order, the expression taking the form W^ — W^-\- J V'dx^

a class of problems not yet considered. In the present case,

recollecting that y"dx = dy\ y'dx = dy, we easily obtain, by

parts.

jT'^y
^~ dx = y^^ly;

-
y.^ly:

- f\y^
-
^y'ly'dx

= W,-W,+ r'V'dx, (4)

Now if we vary y^, y/, we shall increase W^ by

^ tfr. +^ *r/, or {nr-' iy'Sy\ +(^ sy) ,
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and we can change W^ in no other way. A similar equation

of course holds for W^. But these terms, relating to the limits

only, can have nothing to do with the form of any general

solution, which must, therefore, depend solely upon the form

of V\
Now V is a function oi y andy only, and

P= —
ny'^ -^ly'

—
ny^

- ^

Hence by formula (C), Art. 56, we have, as before,

^yn
-
\y' =. C, y'*^

z=z CX-\- d.

Now the terms at the limits resulting from the variation of

V^ are P^^y^
—

P^^y^, which must be added to those obtained

by varying W^ and W^. Performing this operation, these terms

become

-
{nyn-^\Sy,^{ny—\dy,+(^)

dy,'
-(^)

(5>;.

But these terms are the same as those which we obtained by
discussing the problem as originally given ;

and as the general
solution is also the same, the difficulty which formerly oc-

curred is not removed.

85. We may, however, from this example see how to pro-
ceed in more important cases of mixed integrals which will

hereafter occur. Thus, suppose we have to maximize or min-

imize the expression

U=W,-W,+ r^Vdx,
vxo

where W, and M^, are any functions of x„ y,, y/, etc., and x,,

Jo> fJ'-'- y"'^ and V is any function oi x, y, / . . . . jj/H

while the limiting values of x are also variable. As before,
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if we change x^ into x^ -\- dx^ and vary y^, j//, etc., W^ will re-

ceive the increment

dW, ,
. dW,. . dW, .

,
.

,

-dv/^'^
+

'dy;''^-^^''^-^''''^

and VV^ will be increased in a similar manner by changing x^

into x^ -f- dx^ and varying j^, j^/o^ etc. These terms, being all

suffixed, cannot control the general solution, which must be

obtained by varying V in the usual manner, transforming the

variation as previously explained, and solving the differential

equation J/ = o which will be obtained. Then we have as

the terms at the limits those derived from the transformation

of dV, together with those derived from varying W^ and W^.

Now if the limits be fixed we shall generally, in order that the

number of limiting equations may not exceed that of the con-

stants in the general solution, require that m shall not exceed

n— I, the difficulty in the last problem arising from the fact

that m is equal to n. But if the limits be not fixed, we shall

also, as before, require usually some restriction upon the ex-

tremities of the curve given by the general solution.

Section VI.

relative maxima and minima.

Problem XV.

86. It is required to find among all plane curves of a given

length which can be drawn between two fixed points, that wJiich,

together with the ordinates of its extremities and the axis of x,

shall contain a maximum area.

Whatever be the nature of the required curve, we know

that its length is y^ \/ 1 ^y^dx; and since it is to be com-
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pared with curves of the same length only, its derived curves

must not differ from it in length, and we must therefore have

I d S^i-^ydx — o. But the enclosed area is / ydA;;and

since this is to be a maximum for all changes in the form of

the curve which permit its length to remain unaltered, we

must have also to the first order / dy dx = o.

Now in the problems hitherto considered no restriction

has been imposed upon the variations of j/, y, etc., except that

they must always be infinitesimal, and the curves given by the

general solution have therefore been compared with all others

which can be derived from them by such variations. The

results, therefore, being subject to no restriction so far as

the variations are concerned, are termed absolute maxima and

minima, observing that the terms maxima and minima are

used in their technical sense only, and not in that of greatest
or least. But in the present problem we are to compare the

required curve with such only as can be derived by infini-

tesimal variations of y' without any increase in its length,
and the area is to be a maximum with respect to such varia-

tions only. That is, if we vary the required curve so as to

increase its length, the area need no longer be a maximum.

Examples of this nature, therefore, are termed problems of

relative jnaxima and ijiiniina, and also isoperimetrical problems,
and constitute the most numerous and important class of ques-
tions discussed in the calculus of variations.

87. Resuming the equations of the last article, and treat-

ing the first as usual, recollecting that Sy^ and Sy^ are zero,

we have

£yydx^O, (2)
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which signify merely that any values of Sy which will satisfy

(i) must also satisfy (2), it being supposed that the derived

curve has been obtained. But although we are permitted to

pass from the required curve to such derived curves only as

do not differ from it in length, the number of such curves may
nevertheless be infinite, so that we cannot express in an ex-

plicit form the nature of the restriction which has been im-

posed upon 6y, or rather upon Sy' ^ although we know that

such variations could be given to y' as would not satisfy equa-

tion (i), and might or might not satisfy (2). This restriction

prevents us from employing our former reasoning, which

d y'
would here 2:ive the equations = o, the differen-^ ^ dx 4/1 _^y2
tial equation of the right line, as appears from Prob. I., and

d y
the impossible equation i = o. Now put Z for

dx 4/1 _py^
Then if Z can be a constant, it is evident that any values of Sy

or dy' which will satisfy one of the equations at the beginning
of the last article will satisfy the other also

;
and we will now

show that this is the only condition which will insure that ^y

cannot be so taken as to satisfy one equation and not the

other.

88. Let x^, x^, x„ x^ be four particular values of x chosen

as hereafter explained, and let s denote the value of the inte-

gral J Sy dx when the limits are ;ir„ and x.. and / its value

when the Hmits are x^ and ^.. Then supposing the required

curve to be obtained, let us make Sy zero, except from x^ to

x^, and from x, to x, ;
that is, leave the required curve un-

varied in form except between these limits. Also let us give
to ^y an invariable sign from x^ to x^, and an invariable but

contrary sign from x^ to x^. Then we shall have

r'dydx = s + t. (3)
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Now although neither s nor t separately vanishes, we can

so take ^y that their sum shall vanish, and thus (i) be satisfied.

Next let q denote the value of the integral / Zdydx when the

limits are x\ and x\, and r its value when the limits are x^

and x^. Now the four values of x may also be so taken

that Z will be of invariable sign from x^ to x^, and also from x^

to ^., it being of no importance whether the signs be the same
or not for these two intervals. We can now, with the values

of Sy formerly chosen, secure that, unless ^ be a constant, q
and r shall be numerically unequal, and consequently that

their sum shall not vanish. But, as before,

r'Z6ydx = q + r, (4)
tyxo

and hence, if Z be variable, we can, without violating the re-

striction which has been put upon dy, give it such values as

will satisfy equation (2) but not (i), which is contrary to the

conditions of the question.

89. Now since Z is a constant, let it equal -. Then
a

aZ= I
;
and restoring the value of Z, we may write

d y'
\ — a

dx 4/1 _|_y

= O, (5)

an equation which involves the coefficients of ^y dx in both

(i) and (2), and is necessarily true, being equivalent to

1 — 1=0. But it will be seen that this differential equation,
which combines both conditions of the question, would also

have been obtained if we had at first required to maximize or

minimize the expression

U=S^l\y-^a^iJry')dx,
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the exti^eme co-ordinates being fixed, and dy or Sy' being

subject to no restriction. Moreover, we shall presently show
that all problems of this sort can be treated in a similar

manner.

Now integrating (5), we have

and solving for y\ we have

Va — \c
—

X)

Whence, by integration, we obtain

y-^d= \/a'-(c-x)\ (8)

which shows, if we employ, as we have, the positive sign, that

the required curve must be a circular arc, in which a must be

numerically equal to the radius r.

90. Suppose now, as just suggested, we attempt to maxi-

mize or minimize absolutely the expression

Here F is a function of y and y' ,
and P= , so that

y I +/"
by formula (C), Art. 56, we have

ny
y + aVi+y' = c +

Whence

VT+Y'
' '"

i^-yy
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which must be solved thus :

Va' -{c- yf

where we still use the positive sign. Integrating this equation,
we have

x + d=^Va'-{c-~yf, (9)

which evidently has the same interpretation as before, except
that c and ^need not be identical with c and d of the last article.

91, It will be seen that besides the two constants which

arise from the integration of (5), which we may call AI — o,

we have also a third constant, a. But now we also have, be-

sides the two ordinary conditions given by assigning the values

of J, and Jo, a third condition, that the length of the circular

arc shall have an assigned value ;
and these conditions are

sufficient for the determination of the three constants.

Consider first the constant a. We know that the length

of the chord of the given arc is V{x,
—

x,y -\- {y^
—

yo)\ and is,

therefore, determined as soon as the limiting co-ordinates are

given ;
and since the length of the arc is assigned, if we find

an expression for the length of any arc in terms of its chord
and radius, and then substitute in that expression the known
values of the chord and arc in question, we can, by solving for

a, determine its value definitely. This expression is

{x,
-

x,Y + {y^
-

y^)-"
= 4r' sin^ —

, (lo)

where s is the length of the given arc, and a is numerically
equal to r, its sign being reserved for future discussion.

After the determination of a, the other constants are readily
found. For, from the general equation of the circle, we have

y,+d=± Va'-ic-xy
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and a similar equation for the lower limit
;
and from these two

equations, when the sign of their second members has been

agreed upon, c and d can evidently be expressed in terms of

a and the given limiting co-ordinates.

92. We will now, before proceeding further, consider the

general mode of treating problems of relative maxima and

minima.

Suppose, then, we require that / vdx shall be a maxi-

mum or minimum, v being any function of x, y, y'. . . .y^\

while at the same time / v^dx is to remain always constant,

v' being any other function of x, y, /,... y^^\ Then because

vdx is to be a maximum or minimum, we shall have to the

first order

t/Xo

Xl

dvdx = o; (i)

/*Xi

and because / v'dx is to be always constant, we must have

absolutely

r^dv'dx = o. (2)

Now suppose the variations of these integrals to be found,

and transformed by integration in the usual manner. Then

if we make Sy^, (5>„, d>/, etc., zero, we shall obtain, from (i)

and (2) respectively, results of the form

fySydx^O, (3)

£v'Sydx^O. (4)
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But Sy being restricted, as hitherto explained, we cannot say
that V and V must separately vanish, but equations (3) and

(4) will certainly be satisfied simultaneously if we can be sure

that V is always equal to V multiplied by some constant
;

V
that is, that —- is a constant

;
and we will now show that no

other condition will satisfy these equations simultaneously.

93. Supposing- the required curve to have been obtained,

choose, as before, four values of x such that neither Fnor V
shall change its sign while x lies between x^ and x^ or between

x^ and x^. Now, as previously, vary the form of the curve

between these two intervals only, and make the sign of dy
invariable for each interval separately, giving to it the same
or contrary sign for these two intervals, according as that of

Fis contrary or the same. Then, although / Vdydx does not

vanish when taken throughout either interval separately, we
can so vary y as to make the integral taken throughout the

second equal to the same integral taken throughout the first,

but with a contrary sign. But we have

£ VSy dx = /;' VSy
d.r +£'' V6y dx, (5)

dy being zero for the rest of the curve. Therefore (2) would

in this case be satisfied. Now put / for -—
,
then (4) will be-

come

lyVSydx
= o,- (6)

Sy being supposed taken as before. But unless / be a con-

stant, we can certainly select the four values of x so that the

two integrals m the second member of (6) shall be numeri-

cally unequal, in which case their sum would not vanish and
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(6), or rather (4), would not be satisfied. Hence /must be a

constant in order to the existence of a relative maximum or

minimum, since then any values of Sy which will satisfy (3)

will also satisfy (4), while otherwise it would be possible, even

from among the restricted values of (^J/, to select such as would

satisfy one of these equations and not the other.

The preceding demonstration is due to Bertrand (see Tod-
hunter's History of Variations, Art. 312, and also the seventh

volume of Liouville's Mathematical Journal, 1842), and the

author most heartily agrees with Bertrand in regarding the

ordinary method of treating this subject as insufficient.

Now write
I V

then

V+aV = V- V=o.

But this equation, which involves V and V\ and, being true

under all circumstances, is evidently sufficient for the solu-

tion of the problem, would have been obtained if we had been

seeking to render U an absolute maximum or minimum, where

U— {z>-\~az'')d.v, and thus Ave are enabled to substitute

for the given problem a problem of absolute maximum or

minimum, the general solution of which will be identical with

that which we require.

This method is due to the illustrious Euler, who first re-

duced the treatment of this class of problems to a simple yet

comprehensive rule. (See Jellett, Introduction, page xvii.)

It is evidently immaterial Avhich of the quantities v and 7>'

we select to be multiplied by a constant. For if we have

F— <7:F' = o, then V^ -\- /^V— o, where /^ = —. Moreover, we
a

may also give the constant multiplier any form which may
be convenient, as —

a, 2a, etc., its value being ascertained

subsequently.
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94. Resuming the consideration of Prob. XV., let us now
examine the terms of the second order. Here a difficulty

presents itself in the outset which must be surmounted before

we can proceed. We find that the variation of the area is

simply / dydx, there being no additional terms of the second

order
;
so that if we equate this variation to zero, it would

seem that the area could undergo no change whatever when
the curve is varied, and that consequently we could have

neither a maximum nor a minimum. But the supposition that

the terms of the first order must vanish is only necessary
when there are terms of a higher order, it being sufficient, in

a case like the present, to suppose that they are zero so far

as the terms of the first order are concerned
;
that is, they

need not be zero as regards Sy^, Nevertheless, as we cannot

determine the nature of these terms of the second order,

should any exist, we shall be compelled to change our

method of investigation.

Suppose, then, that we had required the curve of mini-

mum length which, together with its extreme ordinates and

the axis of x^ shall enclose a given area. Here the general
solution will evidently be the same as formerly. For pro-

ceeding as in the first three articles of this section, we shall

obtain equations identical with (i) and (2); and moreover, by
the last article, we see that by Euler's method we are now

merely to maximize or minimize the expression

U=ll\^'^-\-y"-^by)dx,

where b = -. But the enclosed area, instead of being a maxi-
a

mum, IS now to be constant, so that / dydx is absolutely

zero
;
while the length of the required curve, instead of being

constant, is now to become a minimum.
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It should here also be noticed that while the length of the

required curve was to be constant, equation (i), Art. 87, can

be true to the first order only. For since the variation of the

length contains terms of an order higher than the first, and
the entire series is to vanish absolutely, it is clear that the

term of the first order must equal the sum of the others, taken

with a contrary sign.

As the area gives us no term of the second order, we have

only that obtained from the variation of the required curve,

which is

^-0 2/(i+yy
-^ ^^

and if we regard Vi +y' as positive, the length of the curve

is evidently a minimum. It must, however, be remembered
that Sy and dy' are restricted to such values only as will satisfy

the equation / dydx — o. But since (i) is positive for all

real values of Sy' ,
we only require that the term of the first

order in the variation of the length of the curve shall com-

1 , .1 . • • J • d *

y'
pletely vanish to msure a mmimum ;

and smce — -^==^ ^ dx \/i _^ya
is a constant, this condition is secured when we make

J Sy dx vanish absolutely.

It will be seen that equation (i) would have been obtained

had we found, according to Euler's method, the terms of the

second order in

b being -. But, as before, the variations are not entirely

unrestricted, since they can have such values only as will

makey dj^.r vanish absolutely.
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95. Now let us, according to Euler's method, consider the

problem as originally given. Then we shall have

U^ll\y + aVTT7^)dx. (2)

Here
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in which the limiting values of x, /, y\ etc., are also subject to

change. We have already seen that if we seek to maximize

or minimize an integral of the form U == J Vdx, the general

solution will be the same whether we suppose the limiting
values of x, y, y, etc., to be fixed or not. Hence when V be-

comes, as it will in the use of Euler's method, v -}- av\ the

general solution, obtained under the supposition that the

limits are variable, will be identical in form with that ob-

tained by supposing those limits to be fixed. Now suppose
we add to Prob. XV. the condition that the required curve

shall always have its extremities upon two given curves; and

suppose that the two required points had been found and con-

nected by the required curve. Then, unless this curve were

a circular arc, we could evidently, from our preceding dis-

cussion, vary it so as to increase the required area without

changing the extremities of the curve. The general solution

must therefore, as formerly, be a circular arc, the only ques-

tion being to determine the position of its extremities.

The reader will be able at once to apply a similar mode of

reasoning to any problem of relative maxima or minima which

may present itself; and therefore, without taking space to gen-
eralize the demonstration, we shall assume that the general
solution of these problems is, like those of absolute maxima
and minima, the same in form whether the limiting values of

^7 y, y\ etc., be fixed or variable. Hence, from what has been

said, we see that Euler's method may be employed whether

the limits of integration be fixed or variable, the problem

being treated in all respects like one of absolute maxima or

minima.

97. Assume, then, in order to discuss the limits,

U^£^\y±r\/Y^Vy')dx. (i)
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If we suppose first that x^ and x^ are fixed, while y^ and y^ are

variable—that is, that the arc has its extremities upon the two

right lines whose equations are x = x^ and x = x^
—the terms

at the limits evidently become

which equations signify that the tangent to the arc at each

limit must be parallel to x^ which is clearly impossible. But
if one of the limiting values of y be fixed, the tangent at the

other limit can be drawn as described, and it must be so

drawn.

Now suppose that the limiting values of x are to be vari-

able also. Then the terms at the limits will evidently give the

equation

(_,±,Vi+y^)_^,,±,j^_Z_.^tf,
(2)

with a similar equation at the lower limit. Let the extremities

of the arc be confined to two curves whose equations are

y
—

Fix) ^ F, y — f{x) = /. Then eliminating Sy^ by means
of equations (2), Art. yS, (2) becomes, after omitting the com-
mon factor dx^,

/ r rfy' \

and a similar equation for the lower limit. But since ds, any
element of the arc, equals Vi -\- ydx, (3) may be written

,
sm n .= r, ± ^ ^ cos m + sm ;//

' cos n \ : (4)
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where m is the angle which the tangent to the arc makes with

the axis of x, and n the angle which any tangent to the upper
limiting curve makes with that axis. Let t be the angle which
the tangents to the arc and the limiting curve make with each
other at the upper limit. Then, since t is numerically equal to

n — m, we have

cos /j
— cos in^ cos n^ -\- sin m^ sin n^. (5)

Hence, clearing fractions, (4) gives

r cos /j
=: y^ cos 71^,

and we can establish an equation of a similar character for the

lower limit.

It must, however, be remembered that none of these results

concerning variable limits can be confirmed as true maxima
or minima without an examination of the terms of the second

order, which examination would be impracticable.

Problem XVI.

98, // is required to determine the form of the solid of revolu-

tion which shall possess a given surface and a maximum volume,

the generating curve being required to pass through two fixed

points 071 the axis of revolution.

Assume x as the axis of revolution. Then the volume to

be a maximum is / ny'dx, while the given superficial area

which must remain constant is / 27ry Vi -\- y'"^ dx. Hence,

omitting the constant tt, we have, by Euler's method, to maxi-

mize absolutely the expression
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Hence, after the usual transformation, we have

dU

+ r^
\ 2v+2a Vi +y' - 2a-^—J^^ \ dydx, (2)

which equation is evidently true whether Sy^ and Sy^ vanish or

not.

Here, as Fis a function of r and / onlv, and P= — ,

we have by formula (C), Art. 56,

But since the generating curve is to meet the axis of x, c must

vanish, and we have

2
I

2^j/ / 2a \
O.

(4)

Whence, My be not always zero, we have

,

2a

Hence

and

which, by integration, gives

x + b= ± V^a'-f, (8)

the equation of the circle whose radius is, numerically at least,
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2a, and whose centre is on the axis of x, thus rendering the

required soHd a sphere.

99. We are evidently prevented, by the nature of this

problem, from supposing that y can ever become negative,
and we may therefore use the positive sign only in equation

(8). For if we were to regard y as negative throughout any
interval, say from x^ to x^, we would have the corresponding
zone of surface negative, because dx and Vi -\^ y'^ are taken

positively, which would be absurd. Hence we see from (5)

that 2a is necessarily negative ; and using its known numerical

value, we have 2<^ == — r.

100. We have now two constants, r and b, to determine,
since we were obliged to make c vanish before we could com-

pletely integrate equation (3). But it will be observed that it

would have been sufficient for a solution had we merely
required the generating curve to meet the axis of x at some

point, taking this point as one of the limits, say the lower, and
then regarding the limits as variable. By this method we
would obtain a sphere, as before

;
and then if we impose the

condition that both extremities of the generating curve shall

be confined to the axis of x, as is most natural, we shall have
a complete sphere. Hence, since the superficial area is given,
r^ is at once determined by dividing the area by ^.n, and the

distance x^
—

x^ being necessarily equal to 2r, becomes also

known
;
so that when one limiting value of x is given, the other

can be readily found. Now from (8) we see that b is merely
the abscissa of the centre of the circle or the sphere, and

equals x^ -\- r, or x^
— r. As soon, therefore, as one of the

limiting values of x is given, all the required quantities can be

determined
;
but if neither x^ nor x^ be given, r only can be

determined.

(01. Thus far there would seem to be nothing peculiar or

unsatisfactory about our solution
;
but we come now to speak
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of a point which has occasioned considerable discussion among
mathematicians, and which has led to an important extension

of the calculus of variations.

Suppose that, as in the original enunciation of the problem,
we require that x\ and x^ shall have assigned values, or that

the value of x^
—

x^ shall be assigned. Then the diameter of

the sphere must be x^
—

x^, and the only value which the sur-

face of such a sphere can have is 7r{x^
—

x^y, so that, as we are

no longer at liberty to select a value for the superficial area,

the solution appears at first to fail. But it has now been made

apparent that the general solution of any problem of maxima
or minima in the calculus of variations is entirely independent
of any conditions which may be required to hold at the limits,

the limits having been supposed fixed in the earlier problems
for the sake of simplicity only. Therefore no general solution

can be said to fail so long as it is always possible to assume

such limiting values of x, y, y\ etc., as will satisfy all the con-

ditions of the question which are necessarily involved in the

general solution.

In the present case, if we require that the surface of the

solid may be entirely generated by the revolving curve, these

conditions are merely that the value of the superficial area

may be assigned at pleasure, and that the generating curve

shall have both extremities upon the axis of ;r, which condi-

tions can, as we have seen, always be fulfilled by a sphere.

Thus, since no restriction of the limits x^ and x^ is implied in

the method by which the general solution was obtained, the

apparent failure of the solution, when these limits are assigned,

appears to arise from imposing too many conditions upon the

question, some of which are incompatible, and for this the

calculus of variations is evidently not responsible.
It will be remembered that in Prob. VII. we obtained as a

general solution a catenary, having its directrix upon the axis

of X, and then subsequently showed that the two fixed points
could easily be so taken that no such catenary could be drawn.
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In like manner, in Prob. XV. we shall be unable to draw the

required arc if the given line be shorter than the right line

which joins the two fixed points, or longer than a semicircum-

ference constructed upon this right line as a diameter. In the

first of these problems the conditions can, without changing
the limiting values of x, always be satisfied by assuming suit-

able values for y^ and y^, and a similar remark will apply to the

second problem unless the length of the given line be less than

x^
—

Xq, in which case some change will become necessary in

the limiting values of x also.

The only peculiarity, then, about the present problem would
seem to be that, while in the former two we are permitted to

make various but not all possible assumptions regarding the

quantities x^
—

x^ and y^
—

y^y here but one supposition regard-

ing these quantities can be made for a given superficial area,

and thus, as the probability of failure when we attempt before-

hand to assign the limits, and also the surface, is vastl}^ greater
in this problem than in the other two, it more readily presents
itself to our minds.

But we are naturally led to inquire whether there may not

be some other solution for this and similar problems in those

cases in which the general solution cannot be made applica-
ble. This question, which has received much attention of late,

and has led to an important extension in the calculus of varia-

tions, will be discussed in a subsequent section on discontinu-

ous solutions. It will here be sufficient to say that such solu-

tions do in many cases exist, and are generally composed of

arcs of curves, or of right lines, or of some combination of

both, and they are hence termed discontinuous solutions.

(02 Now if we put for 2a its value — r, the general equa-
tion given by the terms at the limits is

^^y_ryV^+y'\d.r,-(--M^)lSy
o, (9)



MAXIMUM SOLID OF REVOLUTION. 12']

together with a similar equation for the lower Hmit ; and these

equations are evidently hke those of the preceding problem,

except that they are multiplied by y, and — r only is used. If

we suppose x^ and x^ to be fixed, and j, and y^ to be variable,

(9) gives

V^i+/7.
""'

\^^+/-A
o.

Hence we may have y^ = o, y^ — o, thus giving an entire

sphere, which is satisfactory if the surface Avill permit. If

one limiting value oi y be also given, the solution can always
be effected, it being the closed segment of a sphere, having a

given base and height, r being determined by the equation

^._ 4f_ (10)^ -
s - TtFf

s being the given surface, and R the radius of the base. Re-

garding the other solution, j/ = o, j/;'
= o, it may be remarked

that but one of these equations can ever be true, and therefore

the other limit must be fixed.

Now suppose the extremities of the generating curve to

be limited to two other curves, all the curves being supposed
to revolve about x, which is the same thing as limiting the

sphere to two surfaces of revolution. Then, since the terms
at the limits in this and the preceding problem compare as

we have just shown, it will appear, by methods precisely like

those employed in Art. 97, that we shall have

ry^ cos /,
= y^ cos 7i^, (i i)

together with a similar equation for the lower limit. Thus
we have either ji = o and y^ = o, giving a complete sphere,
or else the relation given in the last equation of Art. 97.

To interpret this relation, let aj> be the upper limiting curve.



128 CALCULUS OF VARIATLONS.

p the point of intersection with the arc whose centre is c^py
the ordinate y^ of the limiting curve, and np the normal.

Then cpn = /„ and npy ~ n^, and we have

r _ cos n^

ji cos tl
(12)

and this equation can only be satisfied by making cos t^ unity,
which shows that the tangent to the limiting curve at/ must
be parallel to the axis of x

;
that is, that j, must be either a

maximum or .minimum ordinate. But if y^ should become

equal to r, this relation would no longer be necessary, for

then the lines cp and yp would coincide, the angles cpn
and ypn become the same angle cpn^ and (12) becomes merely
T COS ci)7t- = £_, which determines nothing regardins: the direction
r cos cp7i

of the normal or tangent to the limiting curve
;
and hence in

this case the ordinate
jj/^

need be neither a maximum nor a mini-

mum.

103. It must not, however, be assumed that all the results

obtained in the last two articles will necessarily render the

volume either a maximum or a minimum. For we have

already seen that it is always necessary to appeal to the terms

of the second order before the results obtained by making
those of the first vanish can be interpreted. We have, more-

over, also stated that the discussion of these limiting terms,

when the general solution is known, is a problem of the differ-

ential calculus rather than of the calculus of variations, and

particularly so when the terms of the second order are to be

considered. As a means of illustrating both these remarks,
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we shall consider only the case in which one limiting- value of

y is zero, and take the liberty, as that work is now inaccessible

to most readers, of copying the discussion from. Todhunter's

History of Variations, p. 408.

Let j^ be any ordinate of the limiting curve, // the height of

the segment, v its volume, and s its surface. Then, since the

segment is known from the general solution obtained from

variations to be always spherical in form, and by supposition
has but one base, we have, r being the radius of the sphere.

(--?) (07t \rh

and we can now, by the differential calculus, determine the

conditions which will render v a maximum or a minimum, sup-

posing s to remain constant. Since s = 2nrJi is to remain con-

stant, rh is a constant, say k^. Then from the equation of the

circle, when the origin is at the extremity of any diameter, we
have

/ = 2rh - h' = 2k'' - le
;

whence

je = 2k'-y\
and therefore (i) becomes

. =
n\k^S/W^f-^(WEir^

(2)

Whence

and since the differential of the limiting curve must be

dy =y^dx, we have

dv_ _ 7ry/(k'--f) . .

dx ^2k'' - f
'
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To make the second member of this equation vanish, we must
havey ^ o, y =^ k, or y =. o.

To test these solutions, write u = k^ — y^, z — V2k'' —y .

Then

dxJ
= J {^'^^r +^W -

2zyy'^ +
uyY^. (5)

Whence it readily appears that if/ vanish, makings a maxi-
mum or a minimum ordinate according as y" is negative or

positive, V will have the like or contrary property to y ac-

cording as u is positive or negative.
\i y— k, without making y' vanish—that is, without being

at the same time a maximum or aminimum ordinate— will

be negative, and 7/ will be a maximum. But if y, while equal
to k, be also a maximum or a minimum ordinate—that is, make

y vanish— —-- will also vanish, and it will be found by trial

74

that the third differential will do so likewise, while —-^ will
dx '

become negative or positive according as
jj/

is a maximum or a

minimum, thus making v have the like maximum or minimum

property with j.

We have already seen that the question does not permit
us to suppose that J can become negative, and hence the limit-

ing curve must be such that when y is zero it shall be a

minimum ordinate, which will cause y' to become zero also.
74

These suppositions will render —i
positive, having reduced

the preceding differential coefficients to zero. Therefore the

supposition that j/ is zero renders v a minimum.

The foregoing results, which have been verified by the

author, appear to be correct, although they do not agree with

those obtained by Prof. Jellett. (See his page 165.)
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We have not yet examined the terms of the second order

in the general solution obtained by the calculus of variations

in the problem, as originally given, but shall resume this point
hereafter.

104. It will be remembered that we were unable to in-

tegrate equation (3), Art. 98 (that is, the equation M =
o),

without supposing c to become zero. Nevertheless this dif-

ferential equation has been shown to be that of a curve traced

by the focus of some conic section as it is rolled along the

axis of X, and the following outline of the demonstration is,

with some difference of notation, given by Prof. Jellett on

page 364, but the proof is due to Delaunay.
Let r =f{v) =/ be the polar equation of any curve, the

pole being assumed at pleasure; and when that curve is rolled

along the axis of x, let y = F{x) = F hQ the equation of the

curve traced by that pole. Then the following relations are

not difficult to estabhsh :

By means of these relations we are sometimes able, when the

equation (differential or other) of one curve is known, to deter-

mine that of the other ; and such is the case in the present
instance. Now write equation (3), Art. 98, thus :

h = {f^d)^V^\ry^^ (3)

where b = — 2a and d——c. Then, from (i), we obtain

rdv
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Substituting in (3) the values of y and Vi +y^ from (2) and

(4), we obtain

dv = _^£^_. (5)
r ybr — r^ — d

The integral of this equation is known to give

I b J b' I- = —
7
— r —75

—
-7 cos z;

r 2d 4d' d

=z-^^^^°^^' (6)

where A =: —. If now we assume, as the polar equation of the

conic section,

I _ I -\- c cos V

r
~

A{i -e")
' ^^^

we can obtain from it equation (6) by merely making e equal

/ d'
to y I —

,
and hence the truth of the proposition is estab-

A
lished.

The curves which may be thus described are exceedingly
various. Thus, if we make d =: — c vanish, the conic section

will become a straight line, and the curve generated will be a

circle, giving a sphere as a general solution, which agrees
with what has been already shown. Moreover, the circle is

evidently the only one of these curves which can ever meet

the axis of x. Again, if we take the circle as the conic sec-

tion, the curve, traced by its focus—that is, its centre—will be

a right line parallel to the axis of x, and the required solid will

be a cylinder.
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Problem XVII.

105, // is required to determine the form which a uniform
cord of given lengthy whose extremities are confined to two fixed

points or curves^ must assume in order that its centre ofgravity

may be at a maximum depth.

Take the horizontal as the axis of x, and let L or

be the given length of the cord, which, by the conditions of

the problem, is to remain constant. Then, by the well-known

principles of finding the co-ordinates of the centre of gravity
of any curve, we shall have, D being the depth, which is to

become a maximum,

Hence, by Euler's method, we are to maximize absolutely the,

expression

Here Fis a function of j/ and y' only, and

p= yy' -^ "y'
, d)

SO that by formula (C), Art. 56, we have
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Whence, by reduction, we obtain

y -|- aL

and

- cL, (3)

which, to be rendered integrable, must be solved thus :

Integrating this equation, we obtain

x^ Al{y-\- B ^ ^{y ^ By - A") + C, (6)

where A — cL, B — aL. Comparing this equation with equa-
tion (5), Art. 59, we see that it is also the equation of a cate-

nary, in which y -^ B \^ put for y ;
because the reasoning in

Art. 59 will apply equally to any curve whose equation is

of that form, and this equation will take that form if, while

keeping the axis of x horizontal, we remove it so as to make
B zero. Indeed, without integrating, we may at once reach

this conclusion. For by comparing equation (3) with equa-
tion (2), Art. 59, we see it- to be the differential equation of a

catenary, as described.

106. To determine the constants A^B, C, we have the con-

ditions that the curve must, if its extremities be fixed, pass

through those fixed points, and must have also a given length,
and these three conditions are sufficient, assuming that we
can solve any exponential equation which may arise. Com-

paring (6) with equation (5), Art. 59, we see that if we make
the axis of x pass through one of the given points, and esti-

mate y upward, B will be the distance from the axis of x to
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the directrix, estimated positively ;
but if we estimate y down-

ward, B will have the same numerical value, but will be nega-

tive. We adopt, however, the former supposition. Then, as

L is positive, a ox — must be also taken positively. We may,

if we choose, dispose of the constant C, as we did of the con-

stant b in Art. 59, by making \t — AlA.

If, then, we can determine A^ the discussion of the con-

stants will be complete ;
and this may be done in the follow-

ing manner: Let D denote x^
—

x^, which is supposed to be

known, and £, j\
—

jKo, which is also known, and let the ordi-

nate, drawn to the lowest point of the catenary, divide D into

two segments, / and ^, while the corresponding segments of

the arc L are m and n, so that we have

/+^-A
'

(7)

m-\-n = L. (8)

Then, in discussions of the catenary, the following equation
is easily established :

7n =
^{e'-e-^),

(9)

together with a similar equation between ^ and Jt. Whence

/J / L -L L -i\
L=-le^-e ^J^e^-e ^V (10)

Now because the catenary passes through the two fixed

points, we have from its equation, (10) of Art. 59,

A / L -I ^ -^\
(II)
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which equation, combined with the preceding four, will evi-

dently determine A, which in statics denotes numerically the

tension which the cord will sustain at its lowest point.

107. If the extremities be not fixed, but merely confined

to two curves, the general solution will of course be un-

changed, only certain conditions must hold at the limits. For
now the limiting terms, which vanished when the extremities

were fixed, become

V^dx,- V,dx,+ P,dy,-P,6y, = o. (12)

Substituting the values of P and V from (i) and the preced-

ing equation, (12) gives, for the upper limit,

together with a similar equation for the lower limit. Let the

equation of the upper limiting curve be dj/=/'dx. Then

eliminating (5>, by the equation

(13) gives

<y/,
= (/' -/)y-*» (14)

(I +/.'//) = 0. (IS)

Now, to make the" first factor vanish, we must have either

y = — aL = — B or y = ±00. But since B is numerically

equal to the distance of the directrix from the axis of x, this

supposition would make the lowest point of the cord touch

the directrix, and this could not be unless the tension were

zero, in which case the cord would hang in a double right

fine, having its extremities at a common point. Neither can
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we suppose j// infinite. For, from the general equation of the

catenary, we have, by differentiation,

y^\{^-c'^; (i6)

and to make this infinite Ave must have — infinite, giving

either A zero, which condition has just been discussed, or x^

zero, which would make the catenary a right line as before.

Hence we must have i +7/// = o, and a similar condition

will evidently hold if the other extremity be confined to

another hmiting curve. Therefore we conclude that the

catenary will cut its limiting curves at right angles, the con-

stants in this case being determined by the conditions that

the catenary must have a given length, and that its extremi-

ties must cut two given curves at right angles, or pass

through a fixed point and cut one given curve at right angles.

108. The terms of the second order in the case in which

the extremities are fixed are

SU^-r—^
^

^^
. dy'^dx, (i;)

Now from equation (3) we see that y-\-B must be of the

same sign as c. Now writing {i) y -^ B — c Vi -{-/% differen-

tiating and dividing by dy or /dx, we obtain

and therefore c, and consequently y -f B, must be of the same
sign as /'. Now if we estimate y upward, the catenary is

convex to the axis of x, and /', and therefore y+ B, is posi-
tive, and we have a minimum. But if we estimate y down-
ward, y-\- B is negative, and we have a maximum.

These different results appear to be due to the fact that



138 CALCULUS OF VARLATIONS.

by estimating y upward we make the distance of the centre

of gravity from the axis of x approach as near as possible to

— 00
,
while by estimating y downward, we make it approach

as near as possible to + ^
>
its numerical value in either case

being the same, and a maximum.

109. If we assume the vertical as the independent vari-

able, the general solution must be the same whether we can

obtain it by that method or not. For whatever change can

be made in the form of the required curve by ascribing varia-

tions to y and its differential coefficients with respect to x^

can, at least if the curve be continuous and drawn between

fixed points, also be made by ascribing suitable variations to x
and its differential coefficients with respect to y, y itself re-

ceiving no variation. This principle will be found to aid us

in the solution of the following problem.

Problem XVIIJ.*

110. It is required to draw between two fixed points A and B
a curve ofgiven length having the following property : that if at

any point S of the required curve an ordinate NS be drawn, and

on it we lay off NP equal to the arc A S, the curve traced by the

point P shall enclose a maxiinum or minimum area.

N

* This problem is only a particular case of the second of the celebrated iso-

perimetrical problems given by James Bernoulli, the original problem requiring

NP to be any function of the arc AS, which can, of course, not be fully solved so

long as the nature of the function is entirely undetermined. The solution is

from the Adams Essay, Chapter XI.
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Here the area to be made a maximum or a minimum is

I ^sdxy s being the length of the arc measured from A, while

/
'

|/i j^ydx (that is, the length of the arc A SB) is to re-

main constant. Hence we are, by Euler's method, to maxi-

mize or minimize the expression

u=Z\^+^^^+yY-- (I)

Hence, to the second order,

su=r'\6s-\- /-^'^ _ dyH——^ sy' \ dx. (2)

But

^=£y'+y'^^'
Whence

ds ^ r
^

^
dy dx+ - r J^ — dy dx, (3)

and

/c^^ ^,r = xds -f X
-£

dx. (4)

Hence, taking this integral from x^ to x^, and observing from

the figure that x^ is zero, while b may be put for x^, because it

is constant, we have

rssdx^b r\--jL==-6y4
^

^ Syldx
"^^ ^"

( Vi+y -^

2i/(i +yy )

- f\\ y' - dy-i
^

- dy^l^;r^0
^ |/i_|_y^

-^

^2i/(i +y7 S

= f\t-x)\ ,

^'
sy + ^^1_ dy^ X dx. (5)
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Substituting this value in (2), and employing the usual nota-

tion for the limits, we have

dU= r\a -^b- x)\- A Sy' -\
-1

Sy'^ X dx. (6)

Now examining the second factor of the second member of

(6), we see that it is the variation of Vi +y dx, or ds, and that

b — X, or Z, is the distance of any point of the arc ASB from

the line BF, and therefore it is not difficult to see that the prob-
lem is really in solution as though, taking the vertical as the

independent variable, we had required the form of the curve

of given length passing through A and B, and having the dis-

tance of its centre of gravity from BF a maximum or a mini-

mum. Therefore, without solving (6) in detail, we know from

the last article of the preceding problem that this curve is a

catenary, having its directrix parallel to the axis of y.

in. But some investigation will be necessary in order to

determine the sign of the terms of the second order. For

although, as before, it is evident that a, like B of the last prob-

lem, is numerically equal to the perpendicular distance from

BF to the directrix, its sign is not at once clear. Treating
the terms of the first order in (6) in the usual way, we obtain

{a^b- x)--l=._^c, (7)

Whence

,+,_. = ii:i+Z". (8)
y

Differentiating (8), and dividing by dx, we have

cf

ywi+y
= h (9)



SOLID OF MAXIMUM ATTRACTION. I4I

from which it appears that c must always be of the same sign
as y" . But the catenary may be either convex or concave to

the axis of x, so that c will be positive in the former and

negative in the latter case. Moreover, we see from (7) that

a-\-b
— X must always be of the same sign as c, and therefore

the terms of the second order will become positive when the

catenary is convex to the axis of x, and negative when it is

concave, thus showing that the area in question will be a

minimum in the former and a maximum in the latter case.

Problem XIX.

112. // is required to determine the form of the solid of revo-

lution ofgiven mass and iinifor^n density which ivill exert a maxi-

mum attractive force upon a particle situated upon the axis of
revolution.

Take the axis of revolution as that of x, and let the at-

tracted particle be at the origin. Moreover, conceive the

solid to be divided into shces of the thickness dx, by planes

perpendicular to x. Then, by dividing these sHces into dif-

ferential rings, it is easily found that, omitting the factor of

density, because constant, the force exerted by any slice in

the direction of x is

27r ; I
,

^
\ dx.

Hence

is to be a maximum, while the volume / ny'^dx is to remain
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constant. Hence, by Euler's method, we maximize the ex-

pression

U= r'\i ^J. + a/\dx = r'Vdx. (i)

Therefore, to the second order, we have

6U= r
\ ^-^^-3 + 2ay \ Sydx

.r(.r'
—

2/)

+rl"-^ 2(x^-\-yy
Sfdx. (2)

Here F is a function of x and y only, and the terms of the

first order in (^^need no transformation; so that we have at

once, unless y be always zero,

^
^ + 2^==o. (3)

{x^+/)

Now putting for 2a, (3) gives

(^^+y)i^,^^. (4)

But V, the volume, or / rty'^dx, is a known quantity, and

(4) gives

y = (,V)§_^^ (5)

Whence

v=7t r\c^ x^ - x') dx, (6)

But the general integral of the second member of (6) is

;r(l.J^S-ly)+«?. (7)
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Now suppose x^ to be zero, which will place the particle

upon the surface of the solid
;
and assume also that when

;r ==
jTj the generating curve meets the axis of x. Then, by

making y zero, and x, x^, in (4), we see that x^ is numerically

equal to c
;
and taking (7) between the limits o and c, we find

v = ^, (8)
15

It therefore appears that, when the volume is given, the

length of the axis is not in our power, but is determined by
that volume

;
and c^ being known, a is also known.

113. Now the coefficient of Sy" dx in (2) is

Putting for a its value
^,
and substituting for the first

members of (4) and (5) the second members of the same equa-

tions, (9) becomes

I xf^ix"
- 2c^ x^) I 3.^-t

- 2c%

2C'^ 2{ex)l
' 20"^ 2C^

'

Hence the terms of the second order become

Now, since v cannot be negative, we see from (8) that c must
be positive, and it is numerically greater than x^ being equal
to x^. Therefore E is positive, while Z can never become

positive, and the terms of the second order become invariably

negative, thus giving us a maximum.
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Problem XX.*

114. It is required to determine the form of the solid of revo-

lution, having a given base and volume, which will experience a
mijii^num resistance in passing through a fluid in the direction of
the axis of revolution.

Let X be the axis of revolution. Then, reasoning as in

Prob. VI., we see that we must minimize /
-^'-^

, dx, while,

the volume being given, we must have / y^dx constant.

Therefore, by Euler's method, we minimize absolutely the

expression

Here Fis a function oi y andy, and

so that by formula (C), Art. 56, we have

We will assume that the generating curve cuts the axis of

X, which will render b zero, and then we easily obtain the

equations

-y = (T^=
^"d > =-^„ (4)

c being put for -.
a

* The following discussion, which is much more satisfactory than that of Prob.

VI., appears to be almost entirely due to Prof. Todhunter. (See his Adams

Essay, Chapter X., from which this solution is taken.)
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115. Now the last equation can be shown to indicate that

the generating curve is a hypocycloid. For let y' = tan v.

Then, by (4), we have

y = c sin^ v cos v^ (5)

and, by differentiation, we have

y = c(^ sin^ V cos^ V — sin* v)—
dx

di)= ^(3 cos'' V — sin'' v) sin^ v -7-. (6)

Hence

dy
-^
= ^(3 cos'' V — sin* V) sin* v, (7)

Dividing (7) by y' = tan z' = ^-, we have
cos V

dx—- = ^(3 cos' V — sin*
z))

sin v cos ^.
(8)

Squaring and adding (7) and (8), observing that

sin* V -f- sin* v cos* v = sin* 7/ (sin* v -\- cos* ^) = sin* ^.i,

we have, putting ds for an element of the arc,

ds— = ^(3 cos* V — sin* v) sin ^ r=r ^ sin ^v. (9)

To integrate, write this equation thus :

c
ds = — sin 3^/^(3^/).

Then we obtain

s= -
^cossv+ c,. (10)
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This equation is known to indicate that the curve is a hypo-

cycloid, the radius of the rolHng circle being one third that

of the fixed circle. If now we suppose that when y van-

ishes V vanishes also, and measure s from this point, we have

o = cos o-\- c^\ that is, <:=: — ;
and (lo) becomes

3 3

^ = -
(i
—

COS37/). (11)

116: To determine the constant c, we have the conditions

that the solid must have a given base and an assigned volume,
and we may use these conditions thus : Let v^ be what v be-

comes when X ^=^ x^ and when j/ =:j|/j, a known constant, say B,

Then it is shown that the volume of the sohd is

TtB'i^- sin^ v,A sin' v\ , ,

V8 10 '^3 V (12)

We have also, from (5),

B ^^ c^\vl v^CQS>v^\ (13)

and from these equations v^ and c may be determined.

This solution, however, like some others, is not always

possible. For it is shown that the volume can be as great as

we please, but that it diminishes as v^ increases, and has its

least value when v^ = —
,
its value then being — •

If,

therefore, the given volume be less than this quantity, no such

solid, with the given volume, could be constructed upon the

given base.

117. Let us now examine the terms of the second order.

We may evidently write 1/ thus :

U=£\.yf+2af)dx, (1-4)
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where /=: —-—^, and is therefore a function of y' only.^
1 4-y'

•'

Hence the terms of the second order arising from the expres-

sion / yfdx may be trea1:ed as in Prob. VI 1 1., while the term

arising from / 2ay''dx is evidently
- / \aSy''dx. Therefore,

by the formula of Prob. VIII., we have, Avhen we suppose the

limits to be fixed,

where

and

#

f,^^^ 3/1+/'^
dy' (I ^-y'r

(16)

But, from the first equation (4), we have

vH-iv" — 1/'*')

V'= ^

(l^yy
-' ^^hence 2a =/"/'. (18)

Substituting this value in (15), we have

^^=
\S,J\y^y''+y"^f)

dx.
(19)

Now f" is positive so long as y does not exceed three
;
that

is, when v does not exceed -; and
3

that the integral becomes positive.

is, when v does not exceed -; and y" is here positive also, so
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118. But since the distance x^
—

x^ is not fixed, it is evident

that the limits of integration are not altogether fixed. But as

the base is given, and we may consider its distance from the

origin as fixed, the Hmit x^ may be regarded as fixed, as is also

j/j. Now the terms of the first and second order arising
from the variation of x^ and }\ evidently are

-
r. dx,

-
Pfiy^

- i ^dx: - S V, dx,
- L// Sy:, (20)

the last term resulting from the formula in Prob. VIII.
,
when

dy at either limit does not vanish. But

P. = yJ^. -j--
= 7o /o'y" +/o Jo' + 4^jo/oi

dx,

^K = yj: ^y: +/o ^y. + A^y. ^jv

Now since y^ is zero, and, as appears from (4), j/ is also zero,

all the quantities V^, f^, //,
-—- will separately vanish, and the
UXq

terms in (20) will disappear. Therefore the variation arising
from a change in x^ and y^ is not even of the second order,

although it might still be a quantity of the third order; and

as the integral in (19) is positive, we have in this case a solid

of minimum resistance.

Problem XXI.

(19. Let a curve meet the axis of x at tzvo fixed points, the

origin being assumed midway between them. Then it is required

to determine the form of this curve, so that, being revolved about

the axis of x, it may generate a solid of given volume whose

moment of inertia, with respect to the axis ofy, may be a mini-

mum.
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Conceive the solid to be divided into slices by planes per-

pendicular to the axis of x. Then the moment of inertia of

any slice, whose thickness is dx, is

7tin I
—
'(-+xy\dx, (,)

where m denotes the mass, which is constant. This equation
is easily obtained from the moment of inertia of the rings of

which the slice is composed, which is

m'^+-A (2)

J/ being the mass of the ring, or 27tmdydx. Therefore, since

the volume is to remain constant, we must, by Euler's method,
minimize the expression

^'-X? 1 f + -y - -y
\
^- = X? vdx.

(3)

Of course we could have put a for — a^ as the indeterminate

multiplier, and this is what we would naturally do in first in-

vestigating the problem ;
still the present form is known to be

more convenient.

Now we have

^^= £yy^+ ^^'-^
-

^^^^-^ ^-^
=Xy^y^-^ 2'^'- ^"^yy ^^' (4)

Hence, if y be not always zero, we have

/ + 2.r^==2^^ (5)

which shows that the solid must be an oblate spheroid m
which the major axis is to the minor as V2 is to unity.
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120. The terms of the second order are

which, by means of (5), reduce to SU = / y'Sy'dx, and this

being- necessarily positive, we have a minimum.
But while the solution is thus apparently satisfactory, it

evidently affords another example of the kind discussed in

Prob. XVL For if we suppose the limits x^ and x^ to be

assigned
—that is, the minor axis of the ellipse

—then, unless

the volume be just ,
in which B is the semi-minor axis,

no such spheroid can be constructed. But if, without assign-

ing the limits except to make the curve meet the axis of x at

two points equally distant from the origin, we only require

the figure into which a given volume must be formed, as above,

we shall obtain a spheroid in which the axes are related as just

mentioned, the limiting values of x having been determined

by the given volume. Still, in the investigation of the terms

of the second order just given, we have assumed that x^ and

x^ undergo no change. Nevertheless, if we vary x and y at the

limits, we shall not increase these terms, since, y at the limits

being zero, F^, V^,SV^,dV^A-j-\ and (-^j severally vanish.

Here the constants are all determined by the assigned

volume, combined with the conditions that y^ and y^ shall be

zero. For B is determined from the condition that the volume

must equal an assigned quantity; then A, the semi-major
3

axis, by the known relation between the axes
;
after which a" is

found by means of (5).
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Section VII.

CASE LN WHICH V IS A FUNCTION OF POLAR CO-ORDINATES

AND THEIR DIFFERENTIAL COEFFICIENTS.

121. The principles of the calculus of variations thus far

obtained are equally applicable when polar co-ordinates are

to be employed ;
and as the mode of applying these principles

is precisely similar to that which we have already given for

rectangular co-ordinates, we shall present but two examples,
the first of absolute, and the second of relative maxima and

minima.

Problem XXII.

A particle which is always attracted towards a fixed centre^

with a force which varies according to the Newtonian law of

gravity^ is projected from a fixed point so as to pass through a

second fixed point. It is required to determine the nature cf its

pathy assuming that it must be the path of least or minimum
action.

Assume the attracting centre as the pole, r as the radius

vector, or distance of the particle at any time, from the centre

of force, r^ and r, the distance of the first and second points

respectively, and v the natural angle included between r^ and

any other radius vector. Also let /, a constant, be the inten-

sity of the force at a unit's distance, and v' the velocity of the

particle in its orbit at any instant.

Now, from mechanics, the action of the path is

t/So
'ds, (I)

where ds is an element of the path. But

ds = Vdr'+Vdzr' = dvV r' + $^' = Vr^+VV^, (2)
dv
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SO that the action becomes

£\J .fTTj^dv. (3)

Now in determining v' three cases arise. For we know
that the path of a revolving particle will be an eUipse, a parab-

ola, or an h3^perbola, according as v^, the velocity of projec-

tion, is less, equal to, or greater than y — . Let us here con-

sider the first case, and suppose v' — y — — --. Then it is

r, a

known that v' will equal

/^~^. (4)
r a

Substituting this value of v' in (3), and omitting the constant

/, we have to minimize absolutely the expression

^fyVT+T-'d.^fydv. (5)

Now change r into r -\- Sr, and r' into r' -\- Sr', while v re-

mains unvaried. Then we can develop the new state of U
just as we could if in U we had put x for v, y for r, and y'

for r' . Hence, to the first order, we have
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But, as in plane co-ordinates, dr' = --—
,
so that dU may be

dv

transformed in the usual manner by integration by parts, Sr^^

and Sr^ vanishing because the two radii are fixed. But we
need not perform this transformation, which would give an

expression not readily integrable. For the formulas of Art.

56 become at once applicable to polar co-ordinates when in

those formulae we substitute v, r, r\ r\ etc., for x, y, y\y\ etc.

Here, then, F is a function of r and r\ and

dV Wr'P o^ -rr — — , (n\
dr

4/^2_j_^/2
v//

so that by formula (C), Art. 56, we have

Wr""
, , Wr'W Vr'-{- r"' = __!__. + c, and

'' ' = c, (8)

Vr'-\- r' Vr'+ r''

Solving for r^', we obtain

r =
(9)

where 3 = c\ Now put - for r. Then the following equa-

tions will be found to hold true
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where the negative sign is used, because -- = —
. Now

dv r dv

by placing 75—75 within the radical sign in (11), that equa-

tion may evidently be written thus :

,
— du dX

dv =

^t-'^) -{«-,-)
""-"' ""'

Whence, by integration, we obtain

I

I -1 ^ -\ b
V -\-g— cos

-7,-
= cosK

Whence

and

^
b'

I

^ — 7-

COS(z/+^)r^ . (13)

^
b'

u or i = ^+r ^— ^'cos (^+ ^). (14)

Now write b = a{i
—

/), and replace C by its value --. Then

c
the quantitv under the radical readily reduces to —. --,^ -^ -^

a{i
—

e")

and we have

I _ i+^cos(2;+^)

Now in equation (8), in order that c, or Vb, may be a real

quantity, we must, since a is by supposition positive, have



PROBLEM OF LEAST ACTION. 155

I
_ e" positive. That is, e must be less than unity, and (15) is

therefore the equation of an ellipse.

122. It appears as though the general solution contained

four arbitrary constants ; but as e depends upon the ratio of a

and by the semi-major and minor axes, the number of arbitrary

constants is only three. But, as in former examples, the gen-

eral solution is totally independent of the possibility of render-

ing it appHcable in any particular case. Of these constants,

a, or the semi-major axis, is determined as soon as/, r^ and <
are given, but must of course be of sufficient value to enable

the ellipse to pass through the second fixed point. The least

value of a which will render the solution possible in any case

may be determined thus : Since the distance of the two fixed

points from the first focus are respectively r^ and r^, their re-

spective distances from the second focus must be 2a — r^ and

2a — r^. Now from the first fixed point, with a radius 2a — r^,

and from the second, with a radius 2a — r^, describe circular

arcs. Then if these arcs do not touch there can be no solu-

tion, the least admissible value of a being that which will cause

them to touch, while if a be increased beyond this value, the

circles will cut, and there will be two positions for the second

focus
,
that is, two ellipses can be described as required.

Thus, although we seem to have three conditions for the

determination of the three constants—namely, the intensity of

the initial velocity and the distance of each of the two fixed

points from the focus—we can in fact only determine a. This

result might, however, have been anticipated, as we know
from mechanics that while the form of the curve and the

value of its major axis depend solely upon the values of /,

v^' and r^, the minor axis, 2b, is also dependent upon the direc-

tion of the initial velocity, the equation of condition being

Wl sin m,, (16)
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where m^ is the angle which the orbit at the point r^ makes
with r^ ;

and this element of direction we have thus far entirely

ignored. If now we assign the value of m^, b and conse-

quently e will be given by (16), and ^ must then be determmed

by making the ellipse pass through the two fixed pomts.
When a has its least value, so that but one ellipse can be

described, the chord joining the two fixed points is evidently
a focal chord

;
and when a permits two ellipses to be de-

scribed, one of them will have its foci upon opposite sides of

this chord, while the other will have both upon the same side.

This distinction is important, as we shall subsequently show

by Jacobi's method that only when the ellipse is of the latter

species does it render the action a minimum.

123. If, with a fixed. value of r^ and v^, we regard m^ as

variable, and for each value of m^ cause the second fixed point

B to assume the corresponding position, which would render

one solution only possible, the point B will itself always be

found upon the perimeter of an ellipse. For there being but

one solution, if D be the chord joining the two fixed points,

the circles described as above will just touch on D, and we

shall have

2a-r,-\-2a — r,—D, or Z>+r, = 4^ — r„.

But D and r, are variable, while a and r^ are constant. There-

fore, since the point B is always so situated that the sum of its

distances from the first fixed point and the centre of force is

always equal to a constant, it is on an ellipse whose foci are

at these two points, whose major axis is d,a
—

r^, and whose

eccentricity is—^-—
;
and we may call this eUipse the limit-

ing ellipse.

(24. We may, in closing, advert to the two remaining
cases of this problem.,
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Suppose, first, that we make v^ equal to r — . Then it is

known that v' will equal y — ;
and proceeding precisely as

in the former case, or better by making C zero in equation

(14), (since that equation is true when - is zero,) we shall

obtain

I _ I +^cos(^+^)
r (17)

the equation of a parabola, in which b is one half the latus

rectum.

Suppose, secondly, that we have v^ = y ^^-\-:L, Then= i/'^+C
/2f fwe know that v' will always equal r —+ --

; and proceed-
r a

ing in all respects as before, we shall obtain, in the place of

equation (14),

^ =
^ + r ^.+ <^cos(^+^), (18)

where C has the same value as in (14). If now we write

b=^ — a(\ — e^), (18) will readily reduce to

£ ^ _ I ±ccos{v-\-g)
r a(i-e')

' ^^^^

But we shall, in the course of the investigation, obtain an

equation identical in form with (8), except that W will equal

y —I

—
. Hence, that c or Vb may be real, b or — (i — e"")

r a ^ ^

must be positive ;
and therefore, since a is by supposition

positive, it readily appears that i — ^' is negative ; so that



158 CALCULUS OF VARIATIONS.

since e in this case is greater than unity, (19) becomes the

equation of an hyperbola, having its attracting focus within

the curve. This is as it should be, since a particle, revolving
in an orbit according to the Newtonian law, can never de-

scribe an hyperbolic arc having the attracting focus without

the curve.

Problem XXIII.

125. It is required to determine the form of the plane closed

curve ofgiven length which will envelop a maximiiin area.

Assume the pole within the figure, and let / be the length
of the given perimeter. Then, because the curve is to be

closed, we have

S/r^J^r'-'dv, (i)

which is to remain constant. Now m being the enclosed area,

2

we have

we have, by the principle of polar areas, dm = — dv, so that

r^r'dv .

, ,

which must become a maximum.
Now the reasoning of Bertrand, in Arts. 92 and 93, is evi-

dently rendered applicable to polar co-ordinates by substi-

tuting V, r, /, etc., for Xy y, y, etc. Whence we conclude that

Euler's method may be used for polar co-ordinates just as it

has been hitherto employed. We must, then, maximize abso-

lutely the expression

U=J V- + ^V9^-\-r''\dv=l Vdv. (3)
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Here F is a function of r and r' , and

ar'

""-VTW^'
^''

so that by formula (C), Art. 56, we have

2
^ ^

VT+T"^
'

and

r'-4-'^+ -^J^T^'
=^'-

(5)

Therefore

= 7^-20,
(6)

Whence

^ 4^V- _ . ^ . 4^V- _ (^ - 2.y

ir'- 2cY {r'
-

2cy

Hence

dv 7^ — 2C

dr r V4a'r' - {r'
-

2cf

(7)

(8)

Now squaring r" — 2c under the radical sign, dividing both

numerator and denominator by r^^ and then placing within

the radical the quantity 4^ — 4^, (8) may be written thus :

Write

^ = r+ ^. (,o)
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Then (9) becomes

dv = dZ

i/^a' + SC-Z'

Therefore, by integration, we obtain

Z

and

V -\-g=i sin"

sin(t^+^)
Z

V4a'+Sc

(II)

(12)

(13)

Clearing fractions and restoring the value of Z, then clearing
fractions again and transposing the first member, we obtain

r^ — 2r Vd" -\- 2c sin {v ^ g) -\- 2c — o, (H)

which is one form of the polar equation of the circle when
the pole is assumed at pleasure, a being the radius.

(26. Equation (14) is the form in which the result is left by
Prof. Todhunter. (See his History of Variations, Art. 99.)

To interpret this result, let P be the pole, APB a diameter,

and denote PA by C.

Then since the equation of the circle, when the origin is at-^,

a being its. radius, isy = 2ax — 4^^ if we remove the origin to

P, it will become

f=2a{x^C)-{x-^C)\ (15)
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Now, in passing to polar co-ordinates, let r = PFbe the radius

vector, and AB the initial line. Then we have x — r cos v,

and y
— r sin v. Substituting these values in (15), and per-

forming the indicated squaring, we easily obtain by transpos-

ing, observing that sin^ v -\- cos^ z^ = i
,

.

r" — 2aC — C Ar2r(a — C) cos v

= 2aC— C'-^2rVd' - 2aC-\-C' cos ^. (16)

Now put 2c for — 2aC-\- O, and also put for cos v the sine of

its complement, v'. Then transposing the second member of

(16), and putting -j for v\ or the angle DPY, it becomes

r" — 2r Va" -\- 2c sm V -\-2c = o
\ (17)

and by assuming any other initial, as FG, it is plain that the

present v will become v plus some constant, say g.

127. In this problem the terms at the limits, which should

be

present a marked peculiarity. For, since the curve is to be

closed, we must consider the limits of integration, viz., o and

27r, to be fixed, so that the terms become merely P^ Sr^
—

P^ Sr^.

Moreover, r^ and r^ become one and the same radius vector,

and the terms at the limits therefore vanish without causing

dr^, Sr^, Pj, or P^ to vanish. Hence these terms furnish no

conditions for the determination of the arbitrary constants

which enter the general solution. These constants, therefore,

with the exception of a, which is fixed when the length of the

curve is assigned, must remain undetermined. But this should

not be otherwise. For we see from the last article that g is

numerically equal to the angle YPF, while c depends upon the

position of the pole with relation to the centre
;
and we can
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evidently, without affecting the resuh, assume any pole and

any initial line we please.

If, however, we had required that a curve of given length
should pass through two fixed points, and should, together
with the radii to these points, include a maximum area, the

three constants would be determined from the assigned length

of the arc, combined with the two equations which would

hold in order that it might pass through the two given

points.

In leaving this subject, we may remark that whatever has

been shown concerning the general treatment of the limiting

terms in problems of rectangular co-ordinates will be equally

applicable here. Thus, if the limiting values of v only be

assigned, while those of r, r'
, etc., are subject to variation, we

must equate the coefficients of ^r^, ^r/, dr^, dr/, etc., severally

to zero. If it become necessary to vary the limiting values

of V also, we change v^ into v^ -\-dv^, and v^ into v^-\-dv^ ;
and

if the required curve is to have its extremities upon two other

curves, equations (lo) of Art. 69, or the more simple equations

(2) of Art. yOy will be appHcable w^hen we put v for x, r for j,

r' fory ,
etc.

Section VIII.

DISCRIMINATION OF MAXIMA AND MINIMA
{JACOBUS THEOREM).

128. We have already seen that, in discussing the maxi-

mum or minimum state of any definite integral, we must

equate the terms of the first order in its variation to zero, and

then, having solved the differential equation obtained thereby,

this solution must, if it do not reduce the terms of the second

order to zero also, render them positive for a minimum and

negative for a maximum. We have also seen that the method
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of transforming these terms, so as to render their sign evident,

has been far from uniform, while in some cases we have been

unable to investigate the sign of these terms at all. We now

proceed to explain Jacobi's Theorem, which gives us an invari-

able method of investigating the sign of these terms when the

limiting values of jt, 7, y' , etc., are fixed. But as the general
discussion is somewhat abstruse, Ave shall begin with the most

simple case, which is also the one which will most frequently

present itself for consideration.

Case i.

Assume the equation

u=iydx, (I)

where V is any function of x, y and y' only. Then to the

second order, inclusive, we have

•^•^o {dy
-^ ^

dy
^

)

the Hmiting values of x being fixed. Now the terms of the

first order, when transformed in the usual manner, become

P. ^y.
-

P. ^lo + r> ^7 dx,

where

dy'
'

dx dy dx dy''

But if we would render U a maximum or minimum, the

solution of our problem must be the value of y obtained by
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completely integrating the equation M = O] and since this is

an equation of the second order, this value of y will certainly
be some function of x and two arbitrary constants, say

y=f{x,c,,c,) ^f. (3)

Of course other constants may enter F, and consequently y,

but with these we are not now concerned. Then, since the

form of the function / will be independent of the conditions

which are to hold at the limits, we must next so determine c^

and c^ as to satisfy these conditions, and then the solution be-

comes complete so far as the terms of the first order are con-

cerned.

129. The foregoing considerations will prepare us for the

discussion of the terms of the second order
;
but before enter-

ing upon the explanation of Jacobi's Theorem, we may say that

its object in the present case is to put the terms of the second

order under the form -—j multiplied by the square of a cer-

dy
tain function, and also to determine the form of this function.

Now, since the terms of the first order must vanish, there

remain only terms of the second and higher orders, and we

may, to the second. order, write

SU^- fj\^^/+ 2bdy 6/ 4- cSy^) dx,

'

(4)

where a, b and c have the values shown in (2).

Let as assume that (5y^, Sy^ are zero
;
then we shall first

show that d^^can be written thus:

where A and A^ are variable functions, the suffix i having
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no reference to limits. Observing that ^y = -3—, we have,ax

by parts,

fcd/'dx = cSy'dy -fSy-^ cS/. dx, (8)

Also

/ b^y dy'dx = bSy"^
—

j dy -— bdy.dx

= ^^/ - f^^^y ^y'^i'^
-f^ ^fd^' (9)

Hence

2fbSy Sy'dx = bdf - f'^ S/dx, (lo)

Therefore, collecting results, arranging and factoring, we
have

tf ;/= 1
j
(M/). - (M/).+ {c6y d/\ ^ {cSy 6/1

}

which, when we make Sy^ and (^J/o vanish, gives (5^^ in the re-

quired form, and

dx

130. We will now show, in the second place, that if we
vary M, we may also write

6M=AdyJy-^Afiy\ (12)dx ^ ^

We have

. dy dxdy' dx
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Varying the first term, we have aSy -j- b^y' ;
and varying P, we
dP

obtain d^y + cSy' , Hence the variation oi —
-j- (that is, the

change which it undergoes from changing y into y -\- dy^ and

y' intoy+ dy'^ is — -7- {bSy -\- cdy'), or, by differentiation,

— b^y' T- ^y r- cdy\
dx dx

Collecting and arranging, we have

and therefore we may, if Sy^ and Sy^ vanish, write

6U=\lyM6ydx. (14)

131. We have already shown that if the terms of the sec-

ond order in df/ vanish, we shall be obliged to examine those

of the third; and as these will not usually vanish, but will be

positive or negative at our pleasure, we shall be, in general,

safe in assuming that in this case we have neither a maximum
nor a minimum state of U. But it is evident that the quantities

A and A^ are not at all in our power, so that unless those

quantities vanish of themselves the terms of the second order

can only be made to disappear by the assumption of suitable

values of Sy and dy' .

Now let u be such a quantity as will satisfy the equation

Au-\-—-Ay = o,- (15)dx •
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where u' = —-. Then it is clear that if Sj/ throughout the defi-
dx

nite integral can be taken equal to u, or to ku, where k is any
constant, dUto the second order will vanish. Of course since

dy and Sy' must be infinitesimal, k must be also infinitesimal,

unless ti be already so.

132. We will next determine the quantity u, as we shall

then be better able to see how it may be employed. We have

seen that the value of y obtained by the complete integration

of the equation M = o will be of the form y
—

f{x, c^, c^ = /,

and that this value of y vt^ill satisfy the above differential equa-

tion independently of the value of c^ and c^. If, therefore, we
make any changes in the form of the values of these constants,

the resulting changes in
jj/
and its differential coefficients, while

not necessarily zero, will not prevent these quantities from

still causing M to vanish. Now suppose we change c^ into

c, + dc„ and c^ into c^ -\- ^c^, where ^c, and ^c^ are infinitesimal

but independent constants. Then denoting by Sy and dy
the corresponding changes in y and y\ we shall have

and

'>''£"+'£" <«)

*>' = s(f*.+|*-)' (')

Hence these values of Sy and ^y\ if admissible throughout
the range of integration, will render the corresponding varia

tion, (S'M, zero throughout those limits, and will also, as we
see from (14), render S^U zero. But we shall find it conveni-

ent to write
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where k = dc^ and / =: —^
;
and as dc^ and ^c^ are entirely in-

dependent, we can make / assume any real and constant value

we please.
We conclude, then, from (13) and (15), that the general value

of u, if not infinitesimal, is

-=s;+'i- <»)

But although this is the most general form of it, it is evident

that we need not vary both constants in /, so that we may
have

ku = -^'^c, or ku=^ -^ dc^. (26)

133. Let us next consider whether ku can be an admissible

value of ^y throughout U\ because if it can, there will be no

need of any further transformation of the terms of the second

order, since there will be at least one mode of varying j which

will cause these terms to vanish.

We observe, first, that since dy and Sy' must be always in-

finitesimal, if ku be an admissible variation of y for any por-

tion of the integral, say from x^ to x^, u and u' must remain

finite throughout these limits.

In the second place, if ku be an admissible variation of y
throughout a portion only of the required curve, say from x^

to x^y while the values of x^,y^, x^,y, are fixed, then to certainly

make the terms of the second order vanish we must have y^

and JK3 also fixed
;
must change y into y -\- ku throughout the

limits x^ and x^, and leave the rest of the required curve un-

varied. As this requires that u shall vanish, both when
X = x^ and when x = x^, and as dy could not equal ku through-
out any limits unless u vanish at both those limits, we con-

clude generally that to make the terms of the second order
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disappear by the use of kii for 6y, u must vanish at least twice

within the limits of integration.

In the third place, if either of the quantities -4- or -^, which

are not in our power, vanish twice within the range of inte-

gration, while at the same time its first differential coefficient

with respect to x remains always finite, we can make the terms

of the second order disappear by putting that quantity for ?/,

but not otherwise.

Moreover, that we may employ the general value of kti^

all the quantities ^, -—^, -^ and ——^ must remain finite

dc^ dx dc^ dc^ dx dc^

throughout the limits for which ku is employed, and we must
also be able to so assume ti that it shall vanish at least twice

as we pass from x^ to x^.

We will now consider under what circumstances this lat-

di

ter condition can be fulfilled. Put h for —». Then we see

df_

dc^

from (19) that we can cause u to vanish for any value of x we
please, say for x = x^, by taking / = —

K/, and this is all that

we can effect. We can, moreover, in some cases assume u

so that it shall not vanish as we pass from x^ to
;i-,,

while in

other cases we cannot. For our power over u depends en-

tirely upon our assumption of /. Now suppose we find that

Ji, which is not in our power, cannot assume all possible values

from negative to positive infinity as we pass from x^ to x^.

Then, by assuming / equal to one of these values, but multi-

plied by — I, we can effect that u shall not vanish within the

Hmits x^ and x^. But if, on the other hand, we find that h

ranges through all real values, we cannot assume / so that u

shall not vanish at least once.

To apply the foregoing, assume / so that u shall vanish

when X — x^. Then if the range of h through all real values



I/O CALCULUS OF VARLATIONS.

be complete, il will evidently vanish again at or before the

upper limit, according as h may complete or more than com-

plete its range, and we can make the terms of the second

order vanish by the use of kit. But if the range of Ji be only

partial, u will not vanish again at or before the upper limit,

and we cannot employ ku to make those terms disappear.

(34, It is evident that when kit cannot be employed to

make the terms of the second order vanish, some further trans-

formation will be necessary to render their sign apparent ;
and

to this we now proceed.
Let u involve k—that is, be ku—so that it may be infinitesi-

mal, and resume the equations

^u^\Jiy\^^y^^^^fiy'\^y'^^ (21)

and

Au-{-4-A,u' =^0, (22)ax

Then whatever be the value of (^^', we may certainly make it

equal to ut, and (21) will then become

where hii)' = -— ut.
ax

We wish now to reduce (23) by integrating it by parts ;

but before doing so we must show that because (22) is true,

the expression

u -

AiitA^-—A,{ut)' I
dx or Wdx (24)

can always be integrated, its integral taking the form B^t' ,

where B^ is a new variable function, the suffix i having no ref-

reference to limits, and t' = -—.
dx
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135. Multiply (22) by tit, and subtract the product from the

value of W in (24), and we have

W^u\±^Aiut)'-ut£-A,.'\. (.5)

Now
u— A^itit)'

— —-
uAltif)'

— Alutyu. (26)

But {lit)'
= uf+ ///. Whence

u4-Alut)'=. ^u'A.t'^^ —tiA.tu' -A.u'ut' -A.u'H (27)ax ax ax

and

Whence

——itA^u't = iiA^t' -\- 1 -— uA^u' .

ax ax

u A. ASuty = I -^ uAy - Ay \t+-f: ^''^^^'- (2^)ax \ ax J a.X'

Now if the differentiation indicated in the first member of

(28) were performed, it is evident that the only term in which
t could appear undifferentiated would be

ut-^Ay or \4-uAAi' -A.iiAt,ax { dx )

Hence we see from (25) that the terms in li^ which contain t

will cancel, and we shall have

V'^^ic'A,t' = ^Bjf,ax dx
where

B,= n'A, (29)
and

/Wdx =/^_ B,t'. d^= B/, (30)

the constant being neglected.
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136. By the use of (30), (23) may now be integrated by
parts thus :

Wtdx
2e/Xo (31)

=
\ \

^tB/\ - {tB,t\
I -

\iyrdx.

Now examining equations (29), (11), (4) and (2), we see that

d'^V
B, = u'A, = -u'c=-.^u''; (32)

and since we put Sf equal to ut, we have

,^usy-^^ (33)

If the terms without the integral sign in (31) do not vanish,

they must be added to those already in (11). But the suppo-
sition that 6j/^ and fy^ are zero will certainly reduce these

terms to zero unless 21^ and u^ vanish, which would, as we
have seen, indicate generally that there is neither a maximum
nor a minimum. Therefore, finally substituting for B^ and /'

their values from (32) and (33), we have

d/' u'
dx

-2eAo d/^ u^
^-^' (34)

and if we now consider ii as no longer involving k, we must

multiply the last member by k^,

137. Let us now consider the last equation more particu-

larly
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First. We shall assume that before obtaining this equation
it had been ascertained that the terms of the second order

could not be reduced to zero by any use of ku for Sy ;
that is,

that u could be so assumed as not to vanish at all, since other-

wise the last transformation would be needless. /

Second, Now suppose the second factor of (24) does not

vanish permanently, in which case it will evidently be posi-

tive
;
and also that it remains finite throughout the range of

integration. Then for a maximum or a minimum we require
d'^V

only that -—
^
or c shall remain finite, shall not vanish perma-

nently, and shall be of invariable sign. For we have already
seen that infinite values cause the method of development em-

ployed to become inapplicable, and even in the case of a single
element of an integral, render the entire result doubtful. More-

over, if c can change its sign, we can, as has been previously

shown, vary y for such values of x as will render c negative,
while leaving y unvaried for all other values of x, and thus

make d^ negative ;
or by pursuing a similar course with such

values of x as render c positive, we can make dU positive.

But if c remain finite, be of invariable sign, and do not vanish

permanently, we shall have a maximum or a minimum accord-

ing as it is negative or positive.
Third. But suppose the second factor of (34) does vanish.

Then we must have

Whence
u'Sy

—
udy' — O. (35)

u' J Sy' . dti dSy— ^;r = -f- dx, or — = —-^
.

u oy li dy

Therefore ISy = lu -\-g— lu-^ Ik— likii), and dy
—

ku, where
k is any infinitesimal constant. But by supposition the prob-
lem is such that Sy cannot be made equal to ku throughout
the range of integration, and therefore the second factor of

(34) will not vanish permanently.



174 CALCULUS OF VARLATLONS.

Hence we see that if the terms of the second order cannot

be reduced to zero by the use of ku, then unless c vanish they
cannot be reduced to zero by any admissible mode of varying

y, and this supplies what was before wanting in the complete

investigation of the subject. To render the second factor of

(34) infinite, we must, if dy and Sy' be infinitesimal, have either

zi =0 or u' — 00 . But the first condition disappears, since we

suppose zi to be taken so as not to vanish at all, and the second

cannot occur unless ^-^ or -—^ become infinite.
ax dc^ ax dc^

It will be seen that the expression uSy — Syti' m (34) is

the determinant of u, u'
, Sy^ dy'\ so that, putting D for their

determinant, we may write

2 <^^o u""
'

and we shall see hereafter that determinants can always be

employed in expressing the final results of Jacobi's transfor-

mation.

138. Before applying this theorem to any example the

following general directions may be useful.

First. Having obtained the general solution, find—;- or c,

dy
which must not vanish permanently, become infinite, nor

change its sign. For in the first case the terms of the second
order would reduce to zero; in the second the investigation
would become more or less unsatisfactory ;

while in the third

the terms of the second order can be made to assume either

sign, thus rendering a maximum or a minimum impossible.
Second. If these conditions be satisfactory, find the quanti-

ties -— and -5^, neither of which must vanish twice within the
dc, dc„
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range of integration, otherwise we can reduce the terms of

the second order to zero by employing this quantity for u.

Third. Moreover, the first differential coefficients of these

quantities with respect to x should remain finite as we pass
from x^ to x^, otherwise some element of SU mscy become infi-

nite, thus rendering the result untrustworthy.
Fourth. If all these conditions still indicate a maximum or

a minimum, consider next whether, in the general value of //,

h or the ratio between the quantities -4- and -4- can rang-e over
dc^ dc„_

all real values as we pass from x^ to x^. For if it can, the terms

of the second order can be made to vanish by the use of ku
;

but if it cannot, those terms cannot be reduced to zero by any
admissible values of dy, and our investigations are complete,

assuring us of a maximum or a minimum according as c is

negative or positive.

Problem XXIV.

139. It is required to apply Jacobi s Theorem to Prob. I.

Here the general solution is

y = f{x, c„ e,)
=f= c,x+ ^,. (i)

Also,

so that

d'V I

dy |/(i_|.yy
(2)

and this last expression is evidently positive, finite, and of in-

variable sign. We likewise obtain from (i)
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df
and ir

=
i» (4)

and

df _
dc.
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This last expression is of invariable sign and positive, but be-

comes infinite at the cusp, where both x and y' are zero. The

investigation will therefore be subject to any doubt which

may arise from this fact, (See closing remark of Art. 21.)

Disregarding this objection, we have from (i), by differentia

ating carefully with respect to c^ and c^ successively, while

treating ^ as a constant,

-f- = versin , (3)

df_^
dc„

(4)
'2

Now we shall take x^ to be somewhat less than 2c^. For, as we
have seen, y' becomes infinite at the vertex, and we wish as

far as possible to avoid infinite quantities, since Jacobi's

method does not enable us to overcome the obstacle which

these quantities present to a satisfactory solution. With this

limitation neither of the above quantities will vanish twice

within the range of integration. We also have, by differen-

tiating in the usual way,

d df _ -\ri
^^,

dx dc^ {2c^

—
x)^

d df _
dx dc„

o, (6)

and these quantities remain finite throughout the present lim-

its. Moreover, if we divide -f- by -/-, the quotient /i will be
dc^ dc^

the second member of (3), and this cannot range over all real

values, so that ii can be so taken as not to vanish at all is we pass
from x^ to x^. We conclude, therefore, that, setting aside the

objection previously mentioned, Jacobi's Theorem indicates a

minimum in the present case.
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Problem XXVI.

141. It is required to apply the theorem ofjacobi to Prob.XXII.

From what has been previously said regarding the treat-

ment of polar co-ordinates by the calculus of variations, it will

appear that all the reasoning by which Jacobi's transformations

were effected will apply also to them when we change x into v^

y into r, and y' into r' . We shall consider only the case in

which we have an ellipse, our object being to verify the clos-

ing remark of Art. 122. We shall, with slight deviations, fol-

low Prof. Todhunter. (See his Researches
;
or Adams Essay,

Art. 183.)

Here, as we see from equation (5), Art. 121,

V=V--- Vr' +
Whence

i/l-L
dW ^

r a

dr" ^{r'^r'y

which cannot change its sign, and is always finite and positive.

Now the general solution in equation (15), Art. 121, may be

written

v/ X /- ail — e^) , .

.=/(.,..,.,)=/=-^^-^, (I)

where e may take the place of c^^ and g that of c^.

It appears that (i) contains also another constant, a. But

this constant was introduced when we assigned the initial

velocity, and is not therefore a constant of integration. Now
we have already stated that /might involve, besides the inde-

pendent variable and c^ and c,^, any number of other constants;
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those only which enter by integration being considered by

Jacobi's method.

We must, then, pursue the usual course, and find the dif-

ferential coefficient of /, that is, of r with respect to e and g.

We have, from (i),

^SLufl = I 4- ^ cos {v+ g), (2)
r

Now differentiating with respect to e, we obtain

r r" de
_

^ ' ^ ^
e { r )

the last member being found from (2). Solving (3), we finally

obtain

and

Also,

dr _r^ — ar{i -\- e^)

de ae{i
—

e")

d dr _ [2r-a(i+e')y
dv de ae{\ —'/)

(4)

(5)

dr _dr _ ,

dv dg
^^^

Now neither the first member of (5) nor (7) can become infi-

nite, so that we may employ Jacobi's Theorem with confidence.

But before resorting to the most general method, let us

determine whether the first member of (4) or (6) can vanish

dr
twice. Now to make —- vanish, we must have

de

r = «(i + .'). (8)
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But this is the value of the radius vector drawn to the ex-

treraity of the remote latus rectum. For the distance between

the foci being 2ae, and the semi-latus rectum being a{\ — e^),

we have

^^ ^ 4^V" + ^^ (i
- ej ^^a'^i^ ej.

dr
Also r'

,
and consequently -—

, vanishes at each vertex of the
dg

ellipse, so that we conclude at once that there will be no mini-

mum if the arc extend from vertex to vertex, or be cut off by
the remote latus rectum.

Now, in applying the general method, we are only con-

cerned in knowing the range of h, or the ratio of ; to -^.
dc^ dc„

But h evidently varies as

But

Whence

• 3—^- or , (9
r r

I __ I 4" ^ cos {v+ g)
r
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Now this expression varies only as

(II)
sin {v-^g) rsm{v-\-,g)

Next let us write

r = 2a — R, (12)

rsin(^+ ^) = i^sin w. (13)

Then R will be the radius vector drawn from the other focus,

and w will become the angle which R makes with the major
axis. Then, by substitution, (11) will become

p .
= -.

] -^-^
—- - il^ecotw, (14)Rsmw sm ^ ( K )

the last member being obtained by substituting for R its value

—^^ —, whence h varies as cot w.
I -\- e cos w

Now, in general, any function will have a complete range
from negative to positive infinity when we can cause it to

start with a given value, change sign by passing through zero

or infinity, and return to its initial value. But cot w be-

comes infinite at the two vertices only, vanishes only when
r is the semi-latus rectum, and changes sign at these four

points, and at these only.
Now let i?o and R^ be the radii drawn to the two fixed

points. Then, to make cot w^ and cot w^ equal, r^ and r, must
form a continuous line

;
that is, a focal chord. Should the arc

extend from one vertex to the other, cot w^ and cot w, will

not be equal, but will be infinite and of contrary sign, having
passed through zero. But in all other cases cot w^ and cot zv^

are equal, after having changed sign by passing through in-

finity. ^
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Here, therefore, there is no minimum, and if the arc be still

greater the same remark will hold, unless we were required
to vary the entire arc. For since we can make it vanish at

each end of the focal chord, we can take dy = ku through that

portion of the arc, and leave the remainder unvaried, thus

making the terms of the second order in (5^ t^ vanish. But if

the arc be less than that subtended by a focal chord passing

through the present, which is the remote focus—that is, both

foci lie upon the same side of the line joining the two fixed

points
—then the range of cot w will be only partial, and there

will be a minimum.

142. We may give a general geometrical illustration of

Jacobi's method. Let A and B be two fixed points, joined by
a curve which satisfies the differential equation J/ = o, and

let CED be another curve derived from the first by such vari-

ations of y and y' as will result from varying the constants of

integration, and consequently still satisfying the same differ-

ential equation.

Then there will, if -r-w permit, be a maximum or a mini-
dy

mum when CED cannot twice meet AB unproduced. But if

it can meet it twice, we may regard AFEGB as the new de-

rived curve, which would make the terms of the second order

vanish.

But since we can make u vanish once at pleasure, we may
suppose the derived curve to touch the other at A—that is,

we can make C and A coincide—and then we shall have a
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maximum or a minimum so long as the other point of meet-

ing, G, is not reached.

Moreover, we compare AB with such derived curves onl}^

as satisfy the equation M— o, ahhough their number may be

infinite. For we have seen that when ku cannot be used to

make the terms of the ^second order disappear, they will not
72 T"

vanish at all if -—^r do not vanish. Hence no other class of
ay

curves could render SU \.o the second order zero.

(4-3. Now it is evident that, in order to employ the pre-

ceding theorem, we must be able to find the functions -— and

—
;
that is, to determine the change which y would undergo

when in the general solution we give infinitesimal increments

to c^ and c^. We therefore naturally first seek to obtain the

complete integral of the differential equation J/ = o, and to

exhibit it under the form of j/ =zf{x^ c^, c^.

But it frequently happens that even when we are unable

to obtain the general solution in the explicit form just given,

we can still determine the functions -^ and -^. Still this is not
dc^ dc^

strange, since we can often obtain the differential of an un-

known quantity ;
that is, a differential whose integral is unob-

tainable. When these functions can be found, Jacobi's method
can be applied to the inves,tigation of the terms of the sec-

ond order, whether the equation M = o can be completely

integrated or not
;
and we now proceed to show how they

may be determined in the case of a very important class of

problems.
The following method is due to Prof. Todhunter (see his

Researches, Arts. 26, 282), and we shall see that by it he has

been able to obtain some results not previously known, and

to correct some which had been erroneously given.
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Problem XXVII.

144-. It is required to discuss in full the conditions which will

maximize or minimize the expression

U= r^y^ V dx = r^ Vdx,
Xa

where v is any function ofy' and constants.

Here F is a function of y and y' only, and

dy

Hence, by formula (C), Art. 56, we have

whence

f'{v-y'v')^c,, (I)

which is as far as the integration can be carried, so long as n

and V are entirely undetermined. But we may suppose a

curve to be drawn satisfying (i), and that its equation is

y z=i fix, c^, c^ =/. Then, although we cannot determine the

form of/, we can ascertain what would be the corresponding
variation oi y if c^ and c^ were increased by Sc^ and Sc^, and can

then investigate the terms of the second order.

145. From (i) we have

Also,

;'=f-^=/(/>0=/. (2)
v — y v

y dy'



JACOBVS THEOREM. 1 85

Whence, by supposing the integration performed, we may
write

X = F{y\c,) +c, = F-\- c,. (3)

Now, although / and F mayjcontain other constants besides c^,

these will not be affected by any variation of c^ or c^, leaving

only y' and c^ as variables. Moreover, x will undergo no

change when c^ and c^ vary, and these constants themselves

are entirely independent of each other. We have then, from

(2) and (3),

dc, dc,~^dydc,
^^^

and

Whence

_dF dFdy^~
dc,'^~dy'~d^^'

^^^

d_ld_l ^_dF^
dy' dc^ dc^

^ '

Differentiating (2) and (3) with respect to x, we obtain

and

Whence

Hence, and then multiplying by (8) and comparing with (6),

df dy' _ y' dy' _ y'dF dy' _ y'dF
dy dc^ /' dc, dy' dc, dc.

(10)
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Therefore

dy _df y'dF

dc^ dc^ dc^

'

Again, from (2) and (3), we have

dy _df dy'

dc^ dy' dc^

and

00

(12)

dFdy' , , ,

dy

Whence, by (9),

Comparing this equation with (8), we obtain -^ — —
y'

dc„

!;=-/• ('4)

We must next determine the form of
f~-J

and
f-^J,

which

are only partial differentials with respect to c^^ this fact being
indicated by writing them in brackets.

From (2) we have

where m — -. Hence
n

\dcj {y
—yv'f

^ ^

But from (i) we have

^ m r m
V -^ J

ymn y
'

and therefore, restoring n, w^e have

dcj ncl
(17)
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Now although we cannot, while v is unknown, determine F,

still it is evident, from its mode of derivation from /, that if

Cj^ enter the latter as a factor, it must also enter the for-

mer unchanged. F must therefore be of the form c;"^w, where

w is some function not involving c^ or c^, but merely y\ and

perhaps constants, not of integration. Hence, from (3), we
have '

x = c,^w-{-c^ (18)

and
X — c^w = -.

Now

Therefore, finally,

dF^ = wmcJ^-^ — -, (10)

dy y — y'{x — c^

dc, nc^
(20)

(46. Now if the value of y found by the solution of (i)

can render U a maximum or a minimum, the terms of the

second order in dC/can be put under the form given in equa-
d'^V y'^d'^v

tion (34), Art. 136. Then, supposing -—^ or —r-jr ^^ ^"^'' ^^

be of invariable sign and finite, it will only be necessary that

u shall be incapable of vanishing twice
;
which will in general,

as we have seen, follow if it can be so taken as not to vanish

at all. Now equations (14) and (20) give us the general value

of 2/, thus :

dc^ dc^ dc^ dc^ dc^

where L = ncd.
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Now by differentiating the last equation with respect to x,

it will at once appear that u' will not become infinite so long
as y" is finite—that is, so long as there occur no cusps. Were
this not so, we could not feel entire confidence in the follow-

ing investigations.

But in order to make u vanish without supposing either

of the quantities -^ or -f- to vanish, we must have

;tr
— ^ = r,

— Z. (22)

Now if y be the ordinate of the curve, we know that the first

member of (22) will represent the abscissa of the point in which
the tangent to the curve at y will meet the axis of x, and we
will denote this abscissa by X. But since Z is a constant

entirely in our power, we can give to the second member of

(22) any value we please. If, therefore, there be any real

value which X cannot assume, we can, by making the second

member take that value, render equation (22) impossible, and

thus cause that u shall not vanish at all.

But suppose either of the quantities
~- or. -5- to vanish

twice. Then equating the first to zero, we obtain x — -^
=

c^.

Whence, if it vanish twice, there must be two tangents which

meet on the axis of x at the point whose abscissa is c^. That

the second quantity may vanish twice, y must also vanish

twice.

(47. We may now complete the discussion of Prob. VIII.,

as promised in the closing remark of Art. 63,

Here n is unity, and /of that article is identical with t/.

Suppose, as before, that y is positive, but that the curve, in-

stead of being concave, is always convex to the axis of x.

Then X cannot always range over all real values. For sup-
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pose the line AE to slide as a tangent along the curve from A
to B. Then if we assume DE as the axis of ;r, this line cannot

meet x between D and E, and the range of X is not therefore

complete. But if CE be the axis of ;r, X will assume all real

values, its range being just complete ;
while if GH be taken as

the axis of ;r, then X, having passed through infinity, will

complete its range before B is reached, and will then repeat
the values of ;r from G to N. If we consider such an arc as

BK, the range of X will evidently be restricted, and the tan-

gents at B and K will intersect above K—that is, above x—
since the ordinate of K must be positive.

^^~\

Hence when y'^ is positive, if the tangents at the extremi-

ties of the arc intersect above the axis of x, we shall have a

maximum or a minimum according as v'^ is negative or posi-

tive, because j/ is positive, and we have seen (Art. 63) that

wheny^ is of invariable sign, /^', which is here u'^ will be also.

But if the extreme tangents intersect on or below the axis of

X, there can be neither a maximum nor a minimum.

Problem XXVIII.

14-8. B is required by means of the preceding method to apply

Jacobis Theorem to Prob. VII.

Here the general equation to be considered is

U= r^yVT+Y'dx^ r^yvdx.
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Whence v" =
-_===^^y

a positive quantity ;
and as the gen-

eral solution is a catenary, having the directrix as the axis of

X,y is always positive. Therefore we infer that the solution

will render U a minimum Avhen the extreme tangents intersect

above the axis of x, but not otherwise.

Suppose, then, the same condittons and notation as in Art.

61, which will of course hold even should j^ and j^ become

equal. Now the equations of the extreme tangents are

J/
—

I; = J// (jr
—

c) and J — /^ = jFo' (-^+ ^).

From these equations we obtain

W y — k — y,'c'

and solving for y, and giving it a suffix, because it will then be

the ordinate of the point of intersection only, we have

'-—jr^'
—

• ^"^

Now put
2c _2c

L — e'^ — e «. (2)

I -
Then multiply equation (4), Art. 61, by y ^", equation (5) by

I _ ^

je~a^ subtracting the second product from the first, and then,

observing that the first member of the resulting equation be-

comes identical with the second member of equation (i) of the

same article, we have, as the equation of the catenary,

y= }c^lb(^ — ke ~''\+c '"'Ike'' — be «
j

^ (3)
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Now differentiating (3) with respect to x only, and then sub-
c ex

stituting successively in the result e^ and e ^ for ^, we have

. Mb-2k
(4)

(5)

where

Therefore

But

yr =
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But performing the multiplication indicated in the second

member of equation (6), Art. 61, it may be written

^^Mbk-{b'-^k'). (12)

Hence, and recollecting that M'^ — 4= L\ the second member
of (11) will become

La ,, . 2cdk .
^-^Mc+— .

(13)

But equation (8), Art. 61, may be written

and hence, since L is always positive, the sign of (13), and con-

sequently that of j/2,
the ordinate of the point in which the

extreme tangents intersect, will be like that olF\
Now it was shown that when but one catenary can be

drawn, F^ is zero
;
but that when two catenaries can be drawn,

F^ will be positive for the upper and negative for the lower.

Hence the extreme tangents to the upper catenary will inter-

sect above the axis of x, thus giving us a minimum
;
while

those to the lower will intersect below that axis, and will not

give a minimum. When but one catenary can be drawn, the

extreme .tangents will intersect on the directrix, and we shall

not have a minimum. Indeed, we may here suppose that the

two catenaries coincide
;
and for a demonstration of the fact

that the extreme tangents w^ould in this case intersect on the

directrix, see Todhunter's Researches, Art. 72.
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Problem XXIX.

149. // is required to apply the general method of Art. 146 to

Case 2, Prob. II.

Here n= and v= Vi +J^ so that
2

^"V „ „ I

dy |/_^(i j^yy

which is always positive and finite
;
thus indicating a mini-

mum, so far as it is concerned. Now as the general solution

in this case is a cycloid, having the horizontal as the axis of x,

we know that X cannot assume all possible values, since no

tangent can meet the axis of x within the cycloid. Hence,
without determining jj/

as a function of x, or even obtaining
the value of u, we are able easily to apply the method of

Jacobi, and to see that we have a minimum.
This result is, however, subject to any doubt which may

arise from the fact thaty is infinite at either cusp, but is alto-

gether trustworthy so long as the portion of the curve which
we are considering does not contain any cusp, as will be the

case if the particle is to start with an initial velocity.

Problem XXX.

(50. It is required to apply the theorem of Jacobi to Prob.

XVL

Here, as will be seen from equation (8), Art. 98, the gen-
eral solution is a sphere, having its centre upon the axis of x

;

and, recollecting that y must not become negative, that equa-
tion may be written

y=VAd'-{x-c:f. (I)
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Now it must be observed that a is not a constant of integra-

tion, but was introduced in accordance with Euler's method

for treating problems of relative maxima and minima, so that

it cannot be varied in applying Jacobi's Theorem
;
and func-

tions involving it, together with x, j/, c^ and c^, will merely be

mentioned as functions of the latter quantities.

It appears, then, that y has in this case been obtained mere-

ly as a function of x and c^, it having been necessary in equa-

tion (3), Art. 98, to make the first constant of integration zero

before we could effect the second integration. Since, there-

fore, the constant c^ has disappeared from the value of j/, we
dy dy

shall not be able readily to obtain the functions -f- and -7- re-

dc^ dc^

quired in the application of Jacobi's Theorem.

151. Since we have seen (Art. 99) that the sign of 2a must

be negative, we have from equation (i), Art. 98,

F=/- 2ay^/\^y'\

Therefore

(rV_ 2ay

dy^~ V(i+/7'

which, being negative, indicates, so far as it is concerned, that

the volume is a maximum.
Now observing the sign of 2a, equation (3), Art. 98, may be

v/ritten

-^^==/ + ^. (2)

Vi-\-y''

But from (2) we see that / can be expressed as an explicit

function oi y and c^\ and we have always

dx or -^=f{y,c,)dy, (3)
y
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Whence, supposing the integration to have been performed,

we have

'*^=/UO+ ^.=/+^.- (4)

Therefore — must in any case equal — . Taking the total dif-

dy y
ferential of (4) with respect to c„ recollecting that any change
in c^ will affect y but not x, we have

Hence
dc^ dy dc^ dc^ y' dc^

^ = -y^. (6)
dc^ dc^

Now in hke manner, recollecting that c^ does not occur ex-

plicitly in /, we have

and therefore

dy dc^ y dc^

%.'-" <''

We must now determine the value of -—-, observing that it is

dc^

only the partial differential coefficient of /with respect to c,.

If / could be found as an explicit function of y and c^, this

could be done directly ; but as / cannot be so found, we must

adopt an indirect method. Now the supposition \\\'dXy is to

become constant, and c^ variable, will make dy constant, but y'

still variable, because it is capable of being expressed as an

explicit function of y and <:,, although -^ will be no longer

total, but merely partial, and can be at once found. But
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f— /—7-; and if in this expression we vary ^,, regarding jj/
as

y
constant, and indicate partial differentials by brackets, we
shall have

But in this case we must have dy=z -^ dc^\ and as 6c^ must

be constant, we have

rdf-

Now from (2), by partial differentiation, we obtain

2ayy' [dy'^_
4/(1 +y^)

Hence

152. When the general solution is a sphere, this integral

can be obtained. For if in (2) we put r for 2a, make c^ zero,

and divide by y, it will become the differential equation of

the circle, whose centre is on the axis of x
;
and we shall have

and dy^
'^''^^

Hence (10) becomes

[l]=-r/^^>-
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dzv
Now puty = tan w and dy' = r—. Then

cos w

rdfl _ I f dzv _ ^ r cos' w+ sin''w ,

\_dc^j r^ cos w sin' w r^ cos w sin" 2x/

I
j f* cos w ,

'

r dw
\

.=
1 / -^-^dzv-\- \. (12)

r (
*^ sin zi;

^ cos w )

^

Now by integrating this expression, we shall obtain

r^l = -ii I I ,i +sin7c> ] ^ _i_^^
U/^J ^ I sin 2£/

'

2 I — sin zt/
j

r
*

Hence, finally, by equation (6), we have

^ = --?^' Z.
dc^ r (14)

It will then at once appear, by comparing (7) and (14), that the

range which we are in this case to examine will be entirely

dependent upon that of Z. Now when zt/ is -, Zis — 00
;
and

when w is zero, ^ is + °^
*»
so that Z ranges twice from — 00 to

-|- 00 as we pass from x^ to x^. We would therefore naturally

infer, from the employment of Jacobi's method, that the sphere
is not the solid of revolution whose volume for a given sur-

face is a maximum
;
an inference which we know to be erro-

neous.

153. Although for convenience we have hitherto tacitly
assumed that, even when the terms of the second order are to

be considered, we may by Euler's method convert any prob-
lem of relative maxima or minima into one of absolute max-
ima or minima, we have not yet established the correctness of

this assumption ;
while we see from the last article that it can-
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not be universally true. In order to discuss the subject in a

general manner, let us resume the conditions and notation at

the beginning of Art. 92. Then, as there, we shall have

/ 6vdx=: Vdydx and / dv' dx = / Vdydx.

Moreover, since the limiting values of Sj/, dy, etc., are to van-

ish, the terms of the second order will become

-T' 6 Vdydx and -T'd Vdydx,

This we have already seen to be the case when the func-

tion contains no differential coefficient higher than y' ,
and we

shall subsequently see that it is true generally.
It must likewise be observed that now, besides being infini-

tesimal, the variations of j, y' , etc., are restricted to such sys-

tems of values as will render / v'dx constant
;
and althoughU Xq

we cannot express explicitly the nature of this restriction, and

although the systems of values which it permits for Sy, 6y\

etc., may still be infinite in number, it cannot be disregarded
in the discussion of the problem.
We shall denote this restriction by writing the variations

affected in brackets
; then, to the second order, we have

Xyv^ dx ^/;' v\sy^ dx+\iy v]m dx=k^i (o

and

£ySv'^ dx =£' V'idy] dx+ \S^ySV'^ \Py\ dx^m+ n. (2)

Now since / 'vdx is to be a relative maximum or minimum,

k -\- 1 must certainly be a small negative or positive quantity
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of the second order ;
and since / v'dx is to undergo no

change when y, y\ etc., are varied, m -\- 71 must vanish, at least

so far as any quantity of the second order is concerned.

154-. Thus far there can be no doubt; but what follows

may perhaps be subject to some criticism, as the author has

not seen it in any other v/ork, although he will not assert that

no similar discussion occurs.

Now the equation m = — n must be true to the second

order, so that it appears that in need not vanish absolutely,
but must become less than any quantity of the first order ;

and

we are therefore led to infer that k also will not vanish, but

become a quantity of the second order. That this supposition
is not inadmissible in problems of relative maxima and min-

ima, we have already seen in the beginning of Art. 94. But
these suppositions regarding k and m will not invahdate the

V
reasoning of Art. 92, by which it was shown that /or-- must

be a constant
; because / could not differ from a constant by

any finite quantity.
Now assume the equation

C"dx+b£yjdx^u, (3)

where b is any constant whatever. Then, since J v'dx is to

undergo no change when we vary jj/,y, etc., the variation of

u to any order, as the second, will to that order equal merely
the variation of its first term. Hence we may write

£\sv-\dx=£;[v-^bv'\\sy\dx

+ \.C {
\.^n+b[SV'^

\
[Sy-\dx = k^-^bm + l-\-bn. (4)
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Now so long as b remains undetermined, k -f- bm may be a

quantity of the second order
;
but when, as explained in Art.

92, we put b — a — —
y-,

we effect that k -(- am shall certainly

vanish, since those terms are then equivalent to

Therefore we have

^+ '^^ =
\S.l^ [\pn+'^\pn ]

i^j'i dx, (5)

as the exact expression to the second order of the change

which / vdx will experience when y, y', etc., are varied ac-

cording to the conditions of the problem ;
and this is the only

'

mode of rendering the expression exact, since it is not only
sufficient, but also necessary, that b should become a in order

to make the terms of the first order entirely vanish.

Now according to Euler's method, let U be what u be-

comes when b — a. Then to the second order we have

\s£yod^
= \SU^ = ij(""

i [cJF] +« [tfF']
I

\_Sy-\ dx. (6)

Whence it appears that we can and must employ Euler's

method to obtain the terms of the second order in an explicit

form. But it will be observed that the restriction still adheres

to the variations in (6), and no method of further determining
its effect upon the general form of (^C/has yet been devised;

still, if, as is usually the case, the general solution can render

the second member of (6) invariably negative or positive for

unrestricted values of Sy, Sy\ etc., this restriction can, of

course, exercise no influence upon the problem, and we shall

be certain of a maximum or a minimum. But if, on the other
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hand, by employing the most general values of Sy, S/, etc., it

should be found possible to cause the second member of (6)

to assume either sign or to vanish, we may conclude justly

that t/is not an absolute maximum or minimum. But this

will not warrant us in asserting that [/, and consequently

t/a;o
vdx, may not be a relative maximum or minimum

;
that is,

a maximum or minimum for all such values of Sj/, 6j/\ etc., as

will render /
'

v'dx constant
;
and having no means of taking

propor account of this restriction upon the variations, we may,
at least theoretically, be unable to determine whether U is or

is not a relative maximum or minimum.

155. Thus we see, first, that Euler s method must be em-

ployed in developing the terms of the second order in this

•class of problems ;
and if by it we seem to have a maximum

or a minimum, we may accept the decision as final. But if, on

the contrary, we appear to have neither a maximum nor a

minimum, we cannot always conclude that such is really the

case, the discrimination being correct as regards an absolute,

but perhaps not as regards a relative maximum or minimum
state of ^.

This latter result is mentioned by Prof. Todhunter (see his

Researches, Art. 283) ; and evident as it is, when the former

is admitted, it appears not to have been noticed by any pre-

vious writer. The former result, however, is assumed by him

without proof. Prof. Jellett has given no discussion of the

ierms of the second order in questions of this character.

156. We can now understand why the theorem of Jacobi
is not as satisfactory for problems of relative as for those of

absolute maxima and minima. For example, in the preceding

problem the condition that the surface is to remain constant

will prevent us from making Sy invariably positive or nega-
tive

;
and as it must change sign, it will certainly vanish at
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least once between the limits x^ and x^, say at the point whose
co-ordinates are x^ and y^. But even if we can so select x^ that

u can vanish both when x = x^ and x = x^, as we certainly can

by considering a hemisphere, it does not follow that we can

ma*ke the terms of the second order throughout the integral
vanish by the use of kit. For when we assume dy = ku

throughout the first hemisphere, we may be obliged to make
some change in the form of the other also

;
that is, ku may

not be an admissible value of ^y unless the first hemisphere
be permitted to increase or diminish its surface.

Nevertheless, when Jacobi's method seems to indicate a

maximum or a minimum, that indication may be regarded as

trustworthy.

157. We may, in passing, notice two particular and ex-

ceptional cases which may arise in the general application of

this theorem. These cases appear to have befn first noticed

by Spitzer. (See Todhunter's History of Variations, Arts.

173, 174.) Suppose, first, that -—^ = throughout the inte-

dy

gral. Now if V involve y' at all, it can, to render this equa-
tion true, contain only its first power. Therefore the general
form of V must be

V=f{x,y)^y'F{x,y)=f^-y'F. (i)

We shall write total differentials in brackets. Then

U^ r' Vdx,

the limiting values of x and y being fixed
;
and therefore to the

first order we have
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Therefore, as usual, we obtain

But

Vdx\~ dx~^^ dy'dy

so that (3) becomes

df dF

i-^=^- (4)

Now (4) involving only x,y, and possibly constants, which are

not of integration, we can, by solving for j/, obtain it as a func-

tion of X without constants of integration. Hence, in appli-

cations to geometry, it will be impossible to satisfy the gen-
eral solution unless the given points happen to be situated

upon the curve which is determined by (4).

The second case is that in which we have

d'V . d'V
o, and

dy"
'

d/ Ldxdydy'}

d dW-] _ o.

As this case is more difficult than the former, and is rather

curious than important, we shall merely give its interpreta-
tion without proof.

First, / being some function of x and y, f and f" being
functions of x only, and the differentials not enclosed in brack-

ets being partial, it is shown that Fmust have the general
form

Whence
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Therefore

Hence if ^is to be a maximum or a minimum,/' must vanish

for all values of x^ and U must be of the general form

which, since the last integral is constant and might be written

F{x), is not a general problem of variations. Thus in this case

the maximum or minimum value of f/must be sought, if at

all, by the differential calculus; and if the limiting values of

X and y be fixed, U can have no maximum or minimum state.

In both these cases F involves the first power only of y,
and they are therefore examples of Exception 2, Art. 51.

158. We may now, before considering the next case, pre-
sent the following general view of the treatment of the terms

of the second order according to Jacobi.

Assume the equation U=J Vdx, where V is any func-

tion of X, J, y . . . . y'^\ and regard the limiting values of

X, y, y . , . . y**- 1) as fixed. Then, as before, the solution must

be obtained from the differential equation M — o, which will

in general be of the order 27t. Hence its complete integral
will involve 2n arbitrary constants, and may be written

and this solution is rendered complete when the constants are

so determined as to satisfy the conditions at the limits.

159. Next the terms of the second order must equal

T r^f

-J^ SMdydx.
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For we have always

But if we vary these coefficients, leaving dy, Sy' , etc., unvaried,

we shall obtain the well-known form for the terms of the sec-

ond order in dV\ namely,

df
^ ^

dydy'
^ ^ ^

dy"
^ ^ ^

dy^^''-
-^

Therefore it appears that the terms of the second order in d^
must in any case equal half of what would result from varying
those of the first order, supposing Sy, <5>', etc., to undergo no

change. They should not, however, be considered as really

arising in this manner, as y, y' , etc., receive no second incre-

ment. But when the limiting values of y, y\ etc., are fixed,

the terms of the first order in (^^ become / MSydx^ so that

those of the second order must equal -/ SMSydx.

160. It is evident that the reasoning of Art. 132 would be

equally applicable whatever might be the order of the difler-

ential equation M= o, and we shall therefore assume at once

that SMsLud J^

'

dMdydx will vanish if for Sy we substitute

the variations of c^, c^, etc., being, as before, entirely indepen-

dent. Then Sy', Sy\ etc., will become —- or ?/,
-—- or n", etc.,

dx dx
the differentials being total with respect to x.
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It will next be shown that SM can be made to assume the

form

dM^ Ady A^^ Afiy' -\. eiQ ^^A^d^^\

After this the terms of the second order can be integrated
I r^^ d' V

by parts, until they finally take the form SU= -J t-t^c

multiplied by the square of a certain function, analogous to

that previously found.

As the proof of the last two pomts is necessarily difficult,

the general reader may, without serious loss, omit the re-

mainder of this theorem, or may at least assume the truth of

the two following lemmas, whose use will be at once evident.

Lemma I.

(61. SM C2ixv always be put under the form

SM=A8y^^^ A,dy + etc + ^"L ^^ ^Z"*^-

We shall, for convenience, abandon our former notation,

and, adopting that of Prof. Jellett, write

Whence

SM—dN — d . ^_ ^_
dx dx

dP d'^P

Si\ —1
-\- etc ± —-—-

. (2)dx ^
dx'^

^ ^
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Jm p
For take any term as 6 -—^^ = dti'^), where t = P„^. Now

if in Art. 9, we put / for j/,
^'' for/, etc., recollecting that /', t\

etc., are the total differential coefficients of t with respect to

X, we shall, by reasoning precisely like that there employed,

find that dt^'^'^ = -^-; so that it is evident that (2) has been

correctly transformed. But •

,,.„ =
f|..^

+^.y + etc
+p,<^/''>,

and

p _ dV^ ~
~d/^)'

Therefore

Hence

m
^;ir"^ ^;i'"^ ( dy^'^'^dy dy^'^^dy

. dW
'

dy^'^^dy^'^^

Now consider some individual term of this series, as

rim //2 77 ^m

^j^m ^j,{m) ^y{l)
-y

dx"^
-^ ^^^

d^V
where / is not screater than 7n, and k =

, , ,,, . Now if /^
dy^^^dy^^)

equal ;;/, this term is already under the required form ; but if

/ be less than m, there will certainly arise from the develop-
d^Pi d^

ment of—i-
a term of the form -—

,
>^ (5>("^), the sisfn of these

dx^ dx''
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terms being like or unlike, according 2iS m — I is even or odd.

That is, if SM be fully written out, it will be found that with

the exception of those terms which are already under the re-

quired form, all the others may be arranged in pairs, the type
of which is the pair

But by a theorem of the differential calculus, any pair of

the form (4) can be arranged in a series of the form

(See Note to Lemma I.)

Whence it appears that all the terms in dj/can be ar-

ranged as stated at the beginning of this lemma.

Lemma IL

162. If A, A^, etc., be functions of x, implicit or expHcit,

and u any quantity which will satisfy the equation

7 72

A2^+4-^y + 4t^y + etc. = o
-, (oax ax

then if we write

U^ u
{ Aut-^--^Aiuty^j-Alut)"^^tz. I

, (2)

Udx will always be integrable whatever be the value of /, the

integral taking the form

J Udx = B/ +^ B/'+ etc., (3)

where B^, B^, etc., are functions derived from A, A^, etc.
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As the proof of this theorem belongs entirely to the in-

tegral calculus, we follow the plan of Prof. Jellett, and append
it in a note (see Note to Lemma II.).

Case 2.

163. Next let U — J Vdx, where V is any function of

X, y, y' and y'\ the limiting values of x, y and y' being fixed.

Then, proceeding in the usual manner, the general solu-

tion must be found from the differential equation M = o,

where

dV d dV d' dV~
dy dx dy'

"^
dx' dy"'

^^^

The complete integral of (i) will give 7 in the form

y=f{^x, c,, c^, c„ c,) =/, (2)

in which the four constants must be so determined as to satisfy
the given values of y^, y^, y/, yj.

But when these limiting values are fixed, we need not ex-

press the terms of the second order in the usual way, which

expression would be difficult to transform ;
but we may write

at once

SU=lXyMSydx. . (3)

We have now an invariable method of transforming SU, since

we can always, according to Lemma I., put dM under the

form

6M=Ady-\-^A,dyJr-^Afy\

and we shall now proceed to apply this lemma in order to

determine the functions^, A^ and A^.
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[64-. For brevity of notation, let ayy^ ayy>, ay>y', ayy, ay^
and Uy^y denote the second differentials of V with regard re-

spectively to y, y and y , y , y and y" , y' andy ,
and y" . Then,

referring to the value of i^ in (i), and writing its variation

in full, recollecting that the variation of the differential of any

quantity equals the differential of the variation of that quan-

tity, we have

SM = Uyy dy+ ayy, (5>'+ ayy dy"
-—

{ay,y dy+ ay,y, (5>'+ a^y 6y")

= ayydy
- — ayy dy+— ayy 6/ + [-

—
ayy, Sy+ ayy. dy'

+ (£. ayy dy+ ayy dy')
+ g, a^y dy'

-^ a^y dy')

"^ -"^ dx\ ^yy^-"
)

'

dx'
"^"^ " '

\dx

+
(£^,,,^

+ ,..y) + g...y-^.3c^r), (4)

where

Now the first three terms of (4) are already in the required

form, so that, setting these aside, we will consider the first

couple. Here /
—

o, n= i, and there can be but one term

resulting from this pair. Therefore, by equation (13), Note

to Lemma I., the couple becomes

^c^^y^'\
or

c^dy,
or

-£.:;,^K^y^

or ^ak,.dy, or
-j- {- ayy).dy, (6)

dx ax
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because a is always unity. Now consider the next couple.

Here / = o, n= 2, and the number of terms which will re-

sult is two. Hence, by (13), the pair becomes

We also have by equation (14) of the same note, since a is al-

ways one, and b is in this case two,

and

'''y+T/''y'='^'y+ii.^'^^y'

^ 2ayy6/. (7)
dx^ dx

In the last pair we have /= i, ?/ = i, and it becomes

dx\dx
^

I dx\ dx -^
J

^ ^

Collecting results from the last members of (4), (6), (7) and

(8), and arranging, we have

dx
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165. We may now write

and we know that if ii be an admissible value of Sy, u having
the form given in Art. i6o, (^^can be rendered zero, and we
infer, as in the first case, that there will be neither a maximum
nor a minimum. But since the limiting values of y and y' are

to remain fixed, we must, in order that ^y may equal u, or ku,

be able to so determine .the constants dc^, dc^, etc., that both u

and ic' shall vanish twice simultaneously at or within the lim-

its of integration. In the former case we may change y into

y-\- ku throughout the limits, while in the latter we make this

change merely for the limits at which u and u' vanish, leaving

y unvaried throughout the remainder of the integral. Also,

since the variations of y, y' and y" must be infinitesimal, to

make ^y equal ku, we must have u, u' and u" finite throughout
the limits for which they are employed.

166. But suppose that the terms of the second order can-

not be made to vanish by the use of u. Then if, as before, we

put ut for 6y, (lo) will become

zrri/ Itdx, (I I)

in which we know, from Lemma II., that Idx is immediately

integrable, giving

fIdx = B/ + 4- ^"^"- (i2)
'-^ dx '

167.' Let* us next determine the functions B^ and B^.

From (lo) and (i i) we have
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^« + -^^,«'+^^,^<" = o (13)ax ax'

and

I=^Aut+ ^- ASut)'^ ^1 Alut)" \
u. (14)

Whence, multiplying (13) by ut, and subtracting from (14), we
have

1= u4-A,{uty + 7c-f^A,{uty
- ut-^Ay - ut^-Aydx dx dx dx

= u [AXutyy+ u {A,{utyY-ut{AX}' - ut{Ayy. (15)

Now we know from Note to Lemma II. that all the terms in /

which contain t undifferentiated must eventually cancel, so

that we may neglect the last two terms in (15), and may also

reject all others in / as they arise. We have then

u\Ai2ityY^\2iAStityY
- u'Aluty and {tity

=
ut'-\-ti't.

Whence

u\Aluty \

' = {iiA.ut'y+ {uA, 7i'ty
- 21'a, uf - u'Aji't.

Now the second and third terms of this equation can be united

into one by Note to Lemma I., because here / = o and n =^ \.

But as this term would certainly contain / undifferentiated,

we need not perform the operation, but may reject them to-

gether with the last, retaining only

(«M,o'. (16)

Again, we have

u\Aiuty'\"-=\uAi2ity'\"- 2 \u'Aiuty\'-^ti"Aiuty'
and

{Uty ^ 2a"-\-22c't'+lc"t\
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SO that

u\ASut)"\"^ {uA,ut")"^2{uA,u'ty-\-(uAyt)"- 2{u'A,ut")'

-
^{tt'A^ u't')'-2{ii'A^ u"ty+ 2i"A,ut"-\- 2u"A, u't'^ u"A, u"t. (17)

Now set aside the first and fifth terms, which are already in-

tegrable ; reject the last, and also the couple 6 and 8, because

they could be united into one term, n being i, and that would
contain / undifferentiated, because / is zero. Then there will

remain two couples ; viz., terms 2 and 4, and 3 and 7. The
first, since I— i and ?i—i, becomes

\{2uA,2i'yfY, (18)

In the last couple / = o, ;2 = 2, and it becomes

{uA,uyt + 2{uAyty',

and rejecting the first term, we have

2{uAyty. (19)

Now collecting the terms from (16), (18), (19), and the first

and fifth of (17), the result can be written thus:

1= {[u'A,
- 4i/''A,+ 2uA,ii' + 2{uA,uyyY+ {u'Ajy

= {B,ty + {Bjr, (20)

and this by immediate integration gives (12) ; and

B, = tt'A,
- 4u"A,^ 2uA^u"+ 2{uA,tiy (21)

and

B, = ti'A,. (22)
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168. We may now integrate (11) by parts, thus:

SU^ 1 ritdx \^^AbJ-\- {Bjy \
- -»

I Bj'+{Bj'y \
2«^^o 2 L

^

)
1 2 ( )

But

If, therefore, we suppose u to be so taken as not to vanish at

either hmit, t^ and t^ must vanish, and we shall have

SU=-
\£l' \bj'^ {B^ t")'

}

t'dx,
(24)

But we see at once that in this case the terms of the second

order require still further transformation, as they are not yet

in a quadratic form
;
and to this we now proceed.

(69. Let Va be such a quantity as will satisfy the differen-

tial equation

B,v'a-^{Bya)' = 0, (25)

Then by putting iia for v'a, we have

B,Ua-\-{B.u'a)' = o, (26)

Assuming for the present that Va and consequently Ua can be

determined, (24) can be still further transformed. For we see

from that equation that if Ua were an admissible value of f
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throughout the limits, ^^ would to the second order reduce
to zero. But whatever be the value of t'

,
we may certainly

represent it by Uata^ and (24) will then become

^U^ -
i/J'

j
B^Uata^ \.BlUata)'^;

|
Uatadx

I /'^i

where I^dx is, as we shall show, immediately integrable by the

note to Lemma II., its integral taking the form

fl,dx=Cj'a. (28)

(70. To find C^, multiply (26) by tiata and subtract from

the value of /^ in (27). Then we shall have

I,
= Ua [BlUa taYy

- Ua ta{B, U ^' ,

'

(29)

But

Ua \ BlUa taYV=\ tla Blu^ ta)']'
- u'a B^tla t^)'

and

Whence

Ua \ BlUa ta)' ]'
= {Ua B, U^ t'a)'+ {Ua B, u'^ 4)'

U d Jd^ 11(1 1 fi 21 d x5g U 0^ 1(1,

Now since all the terms in /, which contain 4 undifferentiated

must cancel, we reject the last term and also the couple 2 and

3, because, as ;/ = i, they could be united into one term which

would, as / = o, contain ta undifferentiated. For the same
reason the second term in (29) is rejected, and we have
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and

where

JI, dx = Q t'.

C, = B, tc\, (30)

171. Resuming (27), dU can now be integrated by parts,

thus :

I /*^i
dx

2^x0

= -'- {C,t\t} +1 [Cj'at^ ^\£'Cj'\dx. (31)

The following equations will also hold :

Sy , iiSy'
—

dyti' f ii6y'
—

dyu'

21,

Now since u does not vanish at either limit, and dy and Sy'

vanish at both, it is evident, from the above value of t'
,
that //

and t^ will become zero, which will cause /« to vanish at the

limits. Then putting for Ua its value v'a, and for C^^ the value

obtained by referring to equations (30) (22), and (9), we have

I r^^ [ t' y^^ =
Wxo ^^v^^'^^'a -7- ^^' (32)

172- We must now determine the form of the quantity Va,

and for this purpose we must evidently solve (25). Now by
comparing this equation with (12), we see that Va is what /

must become in order to render / Idx zero
;
that is, to ren-

der / zero. But /= tiSM, which will at once appear if, in the

final value of (^J/ given in Art. 164, we write Sy = tit, Sy'
—

{tit)'

and Sy'^
=

{^i^Y, which will in no way restrict the values of the
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variations. Hence, since u does not vanish, we must, when /is

zero, have ^M zero. Now we already know that this condi-

tion will be satisfied by making-

= ar^-^hr^-\-cr,^-dr,,
'

(33)

and this condition can, since A, A^ and A^ are not in our

power, be satisfied in no other way. For the integration of

the equationM — o gives jr as a function of x and certain con-

stants, the form of the function being determined, and the

values of these constants only being undetermined. There-

fore, since x does not receive any variation, any change which
cannot be produced in 7 by varying the constants would cause

some change in the form of the function, and hence y, when
thus changed, could no longer satisf}^ the equation J/ =: o,

which it must do in order that dM may vanish. This reason-

ing is evidently applicable whatever be the order of M.
Now it is evident that we can cause the second member of

(33), which we know to represent the most general form of

II, to assume various values for the same value of x by various

determinations of the arbitrary constants a, b, etc. Let ti and
V be any two such values, so that we may write

u^a,r, + a^r^-\- a^ r, + a, r,, (34)

v=.b,r,-\- b, r, -\-b,r, + b, r,. (35)

But since Sy
—

tit, if we make / = —
, (^J/ will become v, and

the equation dM — o will be satisfied, as will also the equa-
tion / = o. Moreover, this is the only solution

; since, by suit-

ably determining the constants in v,
- can be made to equal
li
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any value of t which will render / zero, and therefore every

value which will render / Idx zero.

173. But the value of v^ is not yet fully determined. For

although, by substituting
- for t, we shall render / zero what-

ever be the system of arbitrary constants employed in v, we
shall not, by such a substitution, necessarily satisfy (25). Be-

cause when / vanishes independently of any particular value

of V,J Idx is merely a constant. Hence all that we can say

is that the relation Va— - will render the second member of
u

(25) a constant. Moreover, it is the only relation which will

render it a constant, because it is the only value of t Avhich

will cause / to vanish. Hence, since zero is a constant, if any
real value of Va exist, it must be capable of being expressed in

the form -; only t;ie eight constants, a^, etc., b^, etc., must
u

be so related as to satisfy (25).

One of these relations will immediately appear. For, ex-

amining (25), we see that it is a differential equation of the

third order in Va ;
and hence by integration we should obtain

Va as a function involving not more than three perfectly arbi-

trary constants of integration. If, however, we understand

only by u and v any two quantities of the form given in (34)

and (35) in which the eight constants are so related that -,

when put for t, will satisfy (25), which relation must cause the

V
constants to be so combined that - may contam not more

n
than three arbitrary constants, then we may write

v^ =
-^

(36)
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1 74-. Although this relation between the constants was
noticed by Jacobi, many subsequent writers have fallen into

the error of supposing that they are entirely independent, and

have thus rendered this portion of their explanation untrust-

worthy. Among these writers is M. Delaunay, who was fol-

lowed by Prof. Jellett. The latter, on page 95, makes a state-

ment which would with our notation be equivalent to saying
that whatever value of t will make / vanish, will also render

/ Idx zero, which is manifestly untrue.

175. We may now proceed to the final transformation of

the value of (^t/ given in (32). We have, from (36),

, uv — vu
Vn. = ;:

u u u

Therefore

t' uSy'
—

dyu'

and

/ f Y_ {uv'
-

V7t') {u^y'
- dyuj- (7iSy

-
dyti') {uv'

-
vit')'

But

{uv'
— vuy = uv" — vu"

y

and

(^^,Sy'
—

dyu')' = u^y"
-

Syu".

Substituting these values in (32), reducing, and factoring with

reference to
(3j/, dy' and ^y" ,

we finally obtain

[ uv' — vu' f
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From this equation we see that to render U a maximum
or a minimum, ayy must be of invariable sign, and should also

remain finite throughout the. range of integration, and not

vanish permanently. If these conditions be fulfilled, it is

necessary also that the second factor of (37) should not per-

manently vanish, and it ought also to remain always finite.

The first condition will always be satisfied. For if in any
case it were not, we would have

SU=\£'6M6ydx = o; (38)

and since every element of this integral must have the same

sign as ayy, which is invariable, (38) can only be satisfied by

making dM dy constant. But since Sy^ and dy,^ are zero, this

constant must be zero also, which would render it necessary
that SM should vanish. But this, as we have shown, would not

happen unless u or ku be an admissible value of Sy ; and since,

as explained in Art. 165, we assume in (37) that such is not

the case, it is evident that the factor in question cannot perma-

nently vanish.

Hence we see that if Uy-y be of invariable sign, while SU
cannot be made to vanish by the use of u or ku, as indicated

in Art. 165, neither can it be made to vanish by any other

mode of varying j/,y a,ndy'\ To satisfy the second condition it

is necessary that the denominator in (37) shall not vanish, and

that the coefficients of Sy and dy in the numerator shall both

remain finite. That is, we must be able to so determine the

constants that uv' — vu' may not vanish, while u, u\ u"
, v,

v' and v" must at the same time remain finite. But before we
can examine these conditions, we must be able to express
these coefficients of Sy, Sy' and Sy" as functions of x, and per-

fectly arbitrary constants, and we shall next consider how
this may be effected.
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176. Now from (34) and (35) we have

u = a,r, -\- a^r^ -\- a,r^ + (t,r„ ]

u' = a,r/ + a,r,' + a,r/ + a,r/,

V = b^r, + b^r^ + b^r^ + b,r,,

v'^ b^r; J^b^r: + b,r: -\-b,r:,

W'= b,r: + b,r:+b,r:+b,r:.]

As we wish to substitute these quantities in the various parts
of the second member of (37), we can avoid tedious multiplica-
tions and exhibit the results more explicitly by the use of de-

terminants. For (37) may evidently be written

dU 1 T"^
2t/a-o

dx

I r^^^

2t/Xo

LySy-Ly,S/ + Ly.Sy"\

where

Ly» —
Uy u

Vs V

Ly»

(5j/, dy\ dy"

u, u', u"

v.. v\ v"

u' , u'

j
dxy

Ly LyI —
u, u

V, V

(40)

(41)

Now for convenience we shall denote any determinant of the

second order containing two ^'s and two ^'s by the numerical

suffixes of its first element, and similarly determinants with

respect to r, r'
, etc., will be denoted by the numerical suffixes
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of their first elements, together with the accents of r. Then,
since u'

, tt", v' and v" have the forms given in (39), while Ly is

a determinant of these quantities, we can, by a well-known

principle of the subject, at once exhibit Ly thus :

Ly=:i2'i'2"^iyi'7;'-\- 14. iV

+ 23.2Y+ 24.2r + 34'3V; (42)

and in like manner we obtain

Zj,^
= 12. i2''+i3.i3'^+i4- 14^^+23. 23''+24. 24^^+34. 34^

Zy/,= i2. 12^+ 13. 13^+ 14- 14' +23. 23^+24. 24' +34. 34^
(43)

Hence if we regard the determinants 12, 13, 14. 23, 24, and 34
as new constants, we see that the eight constants in u and v

have so combined as to leave but six in equation (40). If now
we divide Z^, Ly> and Lyn by one of these constants, as 12, and

denote the respective quotients hy My, My' zw^ Myn ,wq may,
without altering the value of equation (40), substitute these

quantities for Ly, Ly> and Lyn. Hence we require only to

determme the forms of these quantities. But if we write

a^'X b^l% c^X d='A e^^X{AA)
12 12 12 12 12

^ ^

then

My = 1^2'^+ a 1^3'^+ d IV+ ^2^3^^+ d2r+ e 3V,
'

JZ,.= i2'^+^i3^^ + ^i4'' + ^23''+^24^' + r34^ I (45)

Myn= 12' -\-a 13' + 3 14' +^23'+ ^24^ +^34^ ^

We have now but five constants to consider, and the last

of these may be expressed in terms of the other four. For
we have

12.34 + 23.14- 13.24 = 0, (46)
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an equation which will be found upon trial to be identically
true. Hence

and

34 i_?i.H_ 13.24 _
12"*" 12 12 12 12
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Now

u(A^z')' = {uA.zy — u'A^z
and

zi^A, u'Y = {zAyy — z'A, u'.

Whence

i = A^(uz' — zu')'. (49)

Also,

u(^A,z")" =z {uAXY' - 2{u'A,z"Y-\-u''A,z";

and developing the remaining term in like manner, and sub-

tracting, we have

k = \A,{uz''
- ztOY' - 2\A,{u'z"

-
z'u")Y. (50)

But since the second members of (49) and (50) are integrable

once, if we add these equations, obtaining thereby the value

of uf— zF, and then integrate, we shall have

J \uf— zF\dx = A,{uz'
—

zic')
—

2AJ^ti'z"
—

z'u")

+ lA,{uz--zinY. (51)

Now put ^y for z, and let 2i be such a value of z or Sy as will

render F zero. Then the second term will disappear from

the first member of (51), and the remaining term will become

/ Idx; and we shall have

f/dx = A,{udy - 6yu')
-

2A,(u'dy' - d/?/')

+ \A,{uSy'
-

Syzc") Y = B,f + {B, fj. (52)

t=^-l-But since t —^-^ and Va = -, we have only to chansre ^y into
u u
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V in order to cause / to become Va- Hence, finally, (25) may
be written

ASuv' - vu')
-

2A,{u'v'''
-

v'u") + \AJ^uv"
-

vu")\' = o
; (53)

and as we may divide by any constant, we may write, as the

final conditioning equation,

A, My. - 2A, My+ {A, My)' = Q. (54)

It also appears by differentiation that

Lyi = L'y» and L'y>
=z Ly-{- uv'" — vu'" := Ly-\- Lx,

where Lx is exhibited by determinants in the same manner as

the other Z's. Hence, dividing these equations, as before, by
the determinant constant 12, we have

My. =r M'y., M'y. = My+ M^, )

[ (55)

M,= i2"'-\-ai3".'+di4'''+ c23"' + d24'''+e34'''' )

It is evident, however, that in order to apply equations

(54) and (55) to the reduction of the constants, we must deter-

mine the particular forms which are assumed by A^, A^, r^, r^,

r^ and r^, which cannot be done so long as the problem re-

mains wholly general.

178. The following example is presented merely as a means
of illustrating the preceding discussion.

Problem XXXI.

It is required to apply Jacobis Theorem to Prob. V.

Here ay>y>
~

2, so that we have next to consider whether

the terms of the second order can be made to vanish by the
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use of u or ku. Now the general solution, equation (6), Art.

42, may be written

Hence we have the following equations :

r^
— x\ r^ —x\ r^ = x, r, = i,

^/ =?>^\ r^ =^2x, r/ =1, rl = o,

r/' = 6xy

(0

r/' = 2, r/' = o, r/^ = o,

^2 =0, r, =0, r,

u = a^x^ -\- a^x^ -{- a^x -\- a^,

u' — la^ x"^ -\-2a^x-\- d.

o.

(2)

(3)

Now if the constants in u can be so taken that u and u' shall

vanish twice or more, simultaneously, within the limits of in-

tegration, the terms of the second order can be made to vanish

by the use of u, and we have in general neither a maximum
nor a minimum.

Now if u and u' can satisfy these conditions, let x^ and x^
be two values of x for which they vanish Simultaneously.
Then we must have

< + ^^,' + ^^, + -'- = o,
«1

*==+^^/+^^3 + -- = 0,
^1

x: + —?
;ir, + —? = o,

3^1 3^1

3 I 2a^ . a^
^3 +— -^3 H—-' = o.

3^1 3^1

(4)

(5)

(6)

(7)
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Subtracting (7) from (6), and (5) from (4), and dividing by

^%~ ^Tg, we have

^. + -^3 + -7-0, (8)

< + ^, ^s +< + "
(^, + ^,) + -'- = O. (9)

Substituting in (9) the value of --from (8), we have

x; + -^2 -^3 + ^" - I {-^. + -^3) (-^2 +-^3) + -- = o

2X„X^
x: , a^ + ?- Oo)2 2

<^j

Substituting in (6) the values of —' and —^ from (8) and (10),

we have, after reducing,

X^ — 2X^ X^ + X^ — O.

Hence x^ and x^ cannot be different values of x^ and the terms

of the second order cannot be made to vanish by the use of u .

But since, as we have seen in Art. 175, these terms can be made
to vanish by no other mode of varying j, we are sure of a

minimum, unless, indeed, we cannot prevent My or Myf from

becoming infinite, or My" from vanishing within the range of

integration ; and these points we shall next consider.

179. Finding, by the use of equations (2), the values oi

My, My, and My in equations (45), Art. 176, and also that of

Mx in equations (55), Art. 177, we shall obtain

Myu = — X* — 2ax^ — ibx''
— cx'^ — 2dx — e,

My> = — 4x^ — 6ax^ — 6bx — 2cx — 2d,

My — — 6x' — 6x —
2c,

M^ = — 6x' — 6ax — 6b.

(II)
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Now since ayuy,,
= 2, we see from equations (9), Art. 164, that

A^—o and A„ = 2. Hence, in this case, equation (54), Art.

177, becomes

- 4My + 2J/V ^ o = - 2My + 2J/^,

as will appear from equations (55) of the same article. Equat-

mg the values of My and M^, we have c = ^l?. Now taking
the value of e from equation (47), Art. 176, and then substi-

tuting in the first of equations (11) 3^ for c, we shall have, after

changing signs,

—
My>^ = x' -{- 2ax^+ ddx"" + ^^^ -\- ad — 3<^'', (12)

—
My' = 4x^ -\- 6ax'^ 4" 1 2^^+ 2dy (13)

— My = 6x' + 6ax+ 6b. (14)

It therefore at once appears that neither My^ nor My can be-

come infinite so long as a^ b, d and x remain finite. We can

also evidently choose these constants in such a manner that

Myn shall not vanish within the limits of integration. For

suppose, for example, that we make both a and d zero. Then
to render the equation

M ,t ^*

3 2

possible, we must have

Hence if we assume b greater or less than this value can be-

come within the hmits of integration, and also make a and d
zero, we shall secure that Myi, will not vanish at all as we pass
from x^ to ,r,; and therefore, as all the requisite conditions can
be satisfied, we are in this case sure of a minimum.
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(80. We have, then, the following general method of ap-

plying the theorem of Jacobi in this case.

First find whether ayuyu remains finite, does not vanish per-

manently, and is of invariable sign throughout the range of

integration ;
because if these conditions be not fulfilled there

is no need of any further investigation. But if they be satis-

fied, next try whether dU can be made to vanish by th©

use of u.

For this purpose we write

and

a^ a^ a^

u' = r/ + --i r/ -t-
--

r,'+ -^
r/.

a, a, a.

Then if SU c?in be made to vanish by the use of u, the follow-

ing equations must be possible :

u^^
—

o, u^ = 0, u^ = o, u^ = o,

where neither x^ nor :r^ must fall without the limits of integra-
tion. To determine the possibility of these equations we first

eliminate between them the constants — ,

~ and --, by which

we shall arrive at an equation containing only x^, x^, and such

constants as enter y in the equation of the curve represented

by the solution. It may then happen, as in the preceding exam-

ple, that we can determine the possibility of satisfying this

equation within the limits of integration. Or, if necessary,
we can, by using the values of y, y\ etc., obtained from the

equation of the curve, eliminate all constants but numbers,
thus securing a numerical equation between x^, x^, y^, j/g, j/,

etc., which it must be possible to satisfy within the limits of

integration.
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If, then, it be possible to satisfy this equation, we infer, as in

Case I, that we have neither a maximum nor a minimum. But

if the hmiting values of u and u' cannot be made to vanish

simultaneously, we may assume that we have a maximum or

a minimum according as ay,>yn is negative or positive.

This assumption will, however, be subject to any doubt

arising from the possibility that we may not be able by any
selection of constants to prevent My or My, from becoming
infinite, or Myn from vanishing for some value of x within the

limits of integration, thus rendering the corresponding ele-

ment oi ^U infinite. To dispose of this doubt, we must, in

the next place, actually find the quantities My, My, and My,,, and

possibly Mx', as functions of x, and but three arbitrary con-

stants, any constants which may enter r^, etc., not bemg
reckoned. But this latter step, which will usually involve

difficulty, may in general be omitted.

181. Some exceptions also occur in the treatment of this

case which are similar to those mentioned under Case i (see

Art. 157). We shall, however, merely indicate these excep-

tions, the discovery of which appears to be due likewise to

Spitzer. (See Todhunter's History of Variations, Art. 276.)

Suppose, first, ay„y„ to become zero. Then it is shown that

in order that^may become a maximum or a minimum, A^ must
have respectively a positive or negative sign throughout the

range of integration.

Suppose, in the second place, that we have ay„yn zero, and
also A^ zero, A and A^ having the values given in equations

(9), Art. 164. Then it is shown that in order that U may
become a maximum or a minimum, A must be respectively

negative or positive throughout the range of mtegration.
Moreover, in this case, as in Case i. Art. 157, we shall find

that the equation J/= o will not be a differential equation in

y, but merely an ordinary algebraic equation, and that there-

fore y will, without integration, be determined as a function of
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X, Hence, geometrically, there will be no solution unless the

limiting values of y and y' happen to satisfy the equation of a

particular curve or class of curves.

Suppose, lastly, that ay^yf,^ A^ and A become severally

zero. Then, as in Case 2, Art. 157, the equation U— J Vdx is

capable of being integrated, and therefore the maximum or

minimum state of U must, if at all, be found by the differential

calculus
;
and if the limiting values of x, y and y' be fixed, U

will have neither a maximum nor a minimum state.

It is evident that in all these cases V contains merely the

first power of y" ,
and they are, therefore, like those in Art.

157, only examples of Exception 2, Art. 51.

(82. As the most general case of Jacobi's Theorem is pre-

cisely analogous to that already explained, and as it is rather of

analytical than practical importance, we shall merely indicate

the method of effecting the required transformation.

Case 3.

Let U = J Vdx, where Fis any function of x,y, y\ ....

y^'^^. Then the general solution J/ = o will usually give y as

a function of x and 2n arbitrary constants of integration, and

these 2n arbitrary constants must be so determ.ined as to sat-

isfy the conditions at the limits, where we shall always suppose
the limiting values of x, y, y\ . . . .

y^''^

-
^) to be assigned.

Now, as before, since these conditions hold at the limits,

and the terms of the first order must vanish, we may write

and may then, by Lemma L, put ^J/ under the form

6M=Ady-{- [A,Sy +etc +[AnSj/(»)
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We shall also have, in this case,

u = A,r,^ A, r, + etc: + ^sn^sw

Hence, by changing (^J/ into ul, and integrating by parts with

the aid of Note to Lemma II., we shall obtain a result which

may be written

-
^X^ 1 ^^^'+{bJ')\

etc. ....
+[Bj''f~'' }

/V^.

Then, as formerly, putting Ua^a for /', and integrating again

by parts, we have

d[/ =

jfC {
^^ ^'^ +

(^^ ^'«)
+ ^^^ + (^^ ta^--'^^'"^^ \

t'adx.

In this equation we may change t'a into ?/64, where ?/& = zv\,

and wi) is a quantity which satisfies the differential equation

C,zv\-\- [c,w\'^-\-
etc +

((f^-^ftC^-DJ^''''^^
o.

Making this change, and integrating by parts, as before, we
have

^U=--J^;\Dj',^[Dj\)^^tc.

! \ (n - 3) )

Continuing this process n times, we shall evidently arrive at

a result which may be written

2 ^^0
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the positive or negative sign being used according as n is

even or odd.

Now it is evident, from the mode in which the integration is

effected, that H must equal A^ ?/ u^a u\ . . . ., and An= ±—-1,

the positive or negative sign being used according as n is even
or odd, as will at once appear if w^e form the functions A, A^y

etc., by Note to Lemma I.

(83. Let us next consider the quantities zi, zia, Uh, etc. We
have, by the same reasoning as that hitherto employed,

u — a,r,-{- a^r^ + etc + ^su^sn, i^a — 'v'a>

Va= -, v = b,r,-\- b^r^ + etc + b2nr2n
li

(0

But the 2n constants a and the 2n constants b are not entirely

independent, but must be so related that Va may satisfy the

equation

B, v'a + [b, v"}I^
etc +

(^,, vjf^^'^'
'^= o

; (2)

that is, Va, when put for t, must render / Idx zero.

The following relations are also evidently true :

/ = 21SM, /j
=

tiaj
Idx, /j

—
tij) J /i dx, etc. (3)

Now to determine the nature of Uh, we see from (i) that zvi, is

a quantity which, being put for /«, will render
y I^dxzQro\ that

is, will render /j or ?/« j /^;t- zero,will render / Idx or udM zero,

will render dM zero. But since, in / Idx, t' is replaced by Ua ta.
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f
ta — — 'j

and in order to render that integral zero, the f in

the value of ta just given must now be so restricted as to sat-

isfy the equation

B, t'+in, t'^+
etc +[b^ t(-)Y

"
'^ = o

;

that is, it must render / Idx zero, or / zero, or m^M zero, or

(SM zero. But always f = —
,
and we can make SM vanish

only by making Sy equal to some quantity of the general form

of u.

Assume ^y = w, where

w = c,r, + c,r, + etc + C2n ^2^.

This will make ^M vanish
;
and if the 271 constants c and the

2n constants a be suitably connected, t, which now equals

— or Wa, will also satisfy the equation / Idx = o, which would

not necessarily happen if these constants were entirely inde-

pendent.
We have now, as the value of /« which was required to

render / Idjt^ zero,

(?)•
^a — 1

—
\t--

ul

But it does not follow that every value of /« which will render

J Idx zero will also render / /^ dx zero, and w^ must be such

a value of /«• Still it is evident that wi^ can be of no other
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general form than that just given for ta\ only, in addition to

the relations already noticed between the constants, the con-

stants in u, v and w must be so related that-;—-/may render

It }

/'•
dx zero.

In a similar manner we may determine Uc = z'c, but will

then be obliged ultimately to introduce into dt/" another quan-

tity of the form

z-=d^r,-\-d^r^^ etc + ^2^ ^2^.

Moreover, these four sets of constants will then be subjected
to three more conditions

;
six in all. For Zc must be so taken

as to reduce to zero the following expressions :

fl.dx, Jl,dx, fidx, SM;

the last condition serving merely to introduce z, but imposing
no restriction upon its constants.

Thus it appears that each increase by unity of it will intro-

duce into SU one more quantity like z, and that each such

new quantity will require one more additional condition than

did its predecessor, the first condition being introduced by
the second of these quantities.

Now T can always be found in terms of the preceding

quantities. For we have

^ = —
, ta = ~, h = i^, etc. (4)U Ma Uh

Whence w^e see that by means of 7^ the final value of SU\N\Vi

be made to involve dy, Sy\ .... dy^), which should evidently
be the case.
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184. The analogy of the preceding cases would lead us to

expect that when the reductions indicated in the last article

are performed, c^^will assume a determinant form; and such

is the fact. This subject, and indeed the whole theorem of

Jacobi, has been most elaborately discussed by Otto Hesse in

a paper which may be found in the 54th volume of Crelle's

Mathematical Journal ior 1857, p. 227, and we are indebted to

this author for much of the preceding discussion, and in par-

ticular for that part which exhibits the relation between the

constants and the manner in which they combine and reduce.

We shall, however, here merely give some of his results.

Let ti, V, w, . . . . X hQ n quantities which, being put for

dy, will severally render 6M zqyo. Then we see from Art. 183

that dU will involve all these quantities. Let

L =

Sy, d/, .... r^J/(«)

u, u\ .... ^^("•>

X, x\ x^-^

Lyn

u^ u
,

. . . . uin - 1)

V, v\ -.X^-1)

x.x\ Xin - 1)

L being a determinant of the order 7i-^\, and Z^ a deter-

minant of the order n. Then Hesse shows that dU will take

the form

\_
r^^ d'V I LdU

dy^^)' \L
,yn

dx.

It is also evident, from Art. 183, that the number of the con-

ditioning equations between the constants involved in u, v,

. . . . X must be the sum 14-2 + 3-}- etc 4-/2—1, or

n{n — i)
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We may here collect a few of these conditioning equa-
tions, the first arising from u^,, the next two from 2^5, and the

last three from Uq.

^,^'a+ etC
+(^^^^Jr.)y^~'^

^O^

C,w\^QtC
-|-(|(f^,^,(n-1)y^"'^^0,

/ \ (71
-

1)

^,^^a+etC J^\B^^^^n)\^ .^o,

f \(n-2)
C, z\ + etc ^[Cn ^b^^

-
i>j

- o,

/ \(n-3)
A-^'c + etC J^[DnZ,^n-2)\ ^o^

w
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where Ly, Ly>, etc., are themselves determinants of the nth.

order. But if in any of these determinants we substitute

the values of its constituents, we know that the determi-

nant will become the sum of products of pairs of determi-

nants, each product consisting of a determinant of the nth

order in constants, multiplied by a determinant of the same
order in the rs and their differential coefficients, there being
as many such products as there are combinations of 2n num-

bers, taken n in a, set, no two determinants, whether variable

or constant, being the same.

This is, however, as far as we can go. For to show, in

general, how these determinant constants combine so that

Ly, Ly>, .... Lyr. may be expressed as functions of x and en-

tirely independent constants, is a problem which has not yet
been solved. Now in order that no element of (5'^maybe-
come infinite, we must be able to so determine the arbitrary
constants that Ly^ shall not vanish, and that none of the quan-
tities Ly, Ly,y .... Ly^ may become infinite within the range
of integration. But the above defect will prevent us from

determining whether or not these conditions can be fulfilled,

since it will prevent us from obtaining these quantities as ex-

plicit functions of x and entirely independent constants.

186. After a general discussion,Hesse considers successively
the cases in which ?/ is i, 2 and 3. In the latter case, the con-

stants will enter Ly, Ly>, .... Lyn, in the form of twenty deter-

minant constants of the third order, and the conditioning equa-
tions will be three in number. Moreover, between these twenty
determinants there subsist thirty identical equations analogous
to equation (46), Art. 176. Now by division, as before, Ly,

Ly>, .... Lyr. become My, My,, .... J/^n, and these constants

may be reduced to nineteen. Then the three conditioning

equations should enable us to reduce them to sixteen, and

finally the thirty identical equations are of such a character as

to enable us to eliminate but ten more determinants.
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Thus it will appear that there remain not more than six irre-

ducible constants. Hesse does not say that these constants

are yet perfectly independent, and the author is not prepared
to say more than that they appear to be so. For a further

discussion of this subject the reader is referred to the paper
in question.

187. We see then, in general, that in order that U may
have a maximum or a minimum state, it is, in the first place,

necessary that or ^^n^n shall remain finite, not vanish per-

manently, and be of invariable sign throughout the limits

which we wish to consider. This principle, however, is not

due to Jacobi, it having been enunciated by Legendre as

early as the year 1786. Still, the method of discriminating
maxima and minima given by Legendrp and Lagrange was

defective, because it gave no means of determining whether

some element of c^f/ might not become infinite, as it always

employed certain functions which could not be determined.

(See Todhunter's History of Variations, Arts. 5, 199.)

If the conditions with regard to
ay^yr. indicate a maximum

or a minimum, we must, in the next place, determine whether
d^can be made to vanish by the use of u, since, if it can, there

is no need of Jacobi's transformation, and we infer at once

that U has neither a maximum nor a minimum state. To make
d^thus vanish we must be able to satisfy the equations

U^ — O,
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neither a maximum nor a minimum, if it be possible, by mak-

ing infinitesimal changes inj,y, . . . .y^), to draw another curve

meeting the first at the points x^, y^ and x^, y^, and having at

these points the same values of y, .... y"-
-

1>, and also satisfy-

ing the equation M ^ o.

Now although, when the limiting values of x, y, y\ . . . .

y{n-\) are assigned, all the constants which enter the equation
of the curve which satisfies all the conditions of the question
are determined, yet as this determination is not alway abso-

lute, allowing us a choice of two or more values, there will in

general be more than one such curve,^as in Prob. VII., where
two catenaries can often be drawn, both satisfying the condi-

tions of the question. Now if such limits be found, in passing

along- one of these curves, as to render it and another curve

coincident between these limits—that is, if the equation of this

curve have one or more pairs of equal roots—dU to the second

order can be made to vanish, and we infer that U has neither

a maximum nor a minimum state.

If we can assure ourselves that SU will not vanish, then we
must, in the third place, determine Ly, Ly>, ....

Z^.», in order to

ascertain whether or not all the elements oi dU remain finite.

But this point has been already fully treated, and we have

seen that this determination cannot always be effected. When
this is the case, the theorem of Jacobi is practically subject to

the same defect as existed in the method of Legendre and

Lagrange. It will appear, however, that by determining the

function tc, which is always possible when the complete inte-

gral of the equation M=o can be obtained, and sometimes

when it cannot, we may frequently be able to infer that U has

neither a maximum nor a minimum state, even when dy^yn is

always finite and of invariable sign ;
and this inference could

not be drawn from the above-named method.

188. From the cases in which n is i and 2, we might natu-

rally expect that some exceptions to the theorem of Jacobi
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would arise wnen n is greater than 2, particularly if
ayr^yx.

should happen to become zero throughout the range of inte-

gration ;
and such appears to be the fact. For Spitzer has

examined also the case in which n is 3, and has shown that

certain forms of Fgive rise to exceptions. We subjoin from

Todhunter's History, Art. 278, the following four forms of

F, which the reader may examine for himself :

v=A^,y,y',y")^y"'fa{x,y,y',y"),

V= /(^, y, y')+y"fa {x, y, y')+ \ h{x, y, y, y") \ ',

V=Ax,y)+y'fa{x,y)+ \f^{x, y, y')\'^ \ fc{x, y, y', /')]',

V=yAx)+\fa{x, y)V+ \Mx, y, y')V+\fc{.x, y, y', y")}',

where /, /«, fb and fc are any functions whatever. Hesse

does not mention the existence of any exceptional cases,

although he had seen the discussion by Spitzer.

It will be observed that in applying Jacobi's Theorem we
have always regarded the limiting values of x, y, /,.. . y^-*)

as fixed, thus rendering the discussion somewhat restricted.

But the solution of the more general problem, that in which

these limiting values are also variable, if it be at all possible,

has up to the present time baffled the skill of those who have

attempted it.

189. Before closing this section we must mention one point
with regard to the terms of the second order not strictly con-

nected with the theorem of Jacobi.

We have already seen that the simplicity of the form in which

these terms appear is often dependent upon our choice of the

independent variable, and it may therefore be well to consider

particularly how the terms in 6U, derived by regarding x and

y successively as the independent variable, are connected, and

why they are not identical.
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Assume the equation

u^jydx, (I)

where Fis any function of x,y,y' , .... y^), the limiting values

of X, /, y, . . . .y"'-i) being fixed. Then, since both x and y
are implicitly, at least, involved in U, we may regard y as some
function of x, and may therefore suppose it the ordinate of

some primitive curve for the abscissa x. Now by varying U
we must pass to some derived curve, and let Y or y -{- dy be-

come the ordinate of this curve for the same abscissa x.

Next taking/ as the independent variable, and expressing
U in terms of y, dy, x and its differential coefficients with

respect to j, equation (i) may be written

V.^Jyy',dy, (2)

the limiting values of y, x, x\ etc., being also fixed, where
dr

x' — -^, etc. Moreover, ^and U. will be identical when the
dy

relations between x and y in (i) and (2) are the same ; that is,

when y is an ordinate of the same primitive curve in both for

the same abscissa. Varying (i) and (2) and transforming the

terms of the first order, observing that the limiting values are

all fixed, we have

\-^^'^^s.y^yd^^\s.yd^+s^!'d-^' (3)

I' UA =Sy'- ^^+ J,CS dy+£ Tdy, (4)

where brackets denote the entire increment which ^and U^
receive by variation, the integrals following M denoting re-

spectively the terms of the second order and all those of a

higher order, and those followingN having a similar significa-
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tion. Now supposing U and U^ identical, the first members

of (3) and (4) will become equal if in (2) we so vary x as to

obtain the same derived curve as we did from (i) by varying

y ;
and this requires dx to have such a value that y may be the

ordinate of the derived curve for the abscissa x -|- ^x. Hence,

by tracing along the derived curve from the point whose co-

ordinates are x and Y to that whose co-ordinates are x -{- dx

and y, we see that

. y= V+ Ydx + - Y'Sx' + etc. ;

and putting for V its value y+ ^y, we find

dy = — y'dx -\- w, (5)

S.= -% , (6)
y

where w contains, only terms of an order higher than the first.

Now, since the second members of (3) and (4) are absolutely

equal, the terms of the first order in these two members can-

not .differ by any term of the first order. Hence, and from

(6), observing that dx = -^, we have, to the first order,

MSydx= NSxdy=: -Ndydx;

so that N = — M. Still, denoting by a the terms of the first

order, and by b those of the second, in (3), and by c and d the

corresponding terms in (4), we cannot say that a and c are

absolutely equal, but they cannot differ by more than some

term of the second order, and they will in general differ by
such a term. In like manner, a -\- b and c -{- d cannot differ

by any term of the second order, although they may differ by
some term of the third, and therefore b and d may, and in

general will, differ by a term of the second order.
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190. Now if ^is to be a maximum or a minimum, and we

express it successively as in (i) and (2),-
then a and c must

each vanish, because M and N vanish, and we may then find

that d is much more simple than b
;
and as these terms must

now be equal as far as the second order, because a and c have

become zero, we conclude that b must contain an expression
which adds nothing of the second order to its value, and that

this, by the second method, becomes involved in c, thus leav-

ing b in the simpler form d.

We know, moreover, that M and N will be entirely inde-

pendent of the conditions which may be required to hold at

the Hmits, so that the relation N — — M must hold whether
the hmiting values of x, y, /, etc., be assigned or not. Now
if the limiting values of x be fixed, while those of y are vari-

able, then if we change the independent variable to y, we may,
by regarding the limiting values of y as fixed and those of x
as variable, pass to the same derived curve as by the first

method. But the abscissae of the extreme points will now be

x^ -{- dx^ and x^ -\- Sx^, whereas they are required to be x^ and

x^ merely. Hence to render \_^U^ and [^^] equal, we must
subtract from the former the increment which U would re-

ceive in virtue of the change in the limiting values of x
;
and

we know that to the first order this increment is

V^Sx,
-

V,Sx,. (7)

Now when [SU] and \SU^ have been made equal, as just

explained, it is easy to find what must be the values of the co-

efficients of Sx^, dx^, 6x^', etc. For let ;/ be 2, and x the inde-

pendent variable. Then, by equation (5), Art. 36, the terms at

the upper limit will be

(A - Q/W. + QA\'' (8)

But from (5) we have, to the first order,

<v / // -X , dSx
Oy ^-y Ox-y' -—',
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and putting for dx its value -^, and observing that—— = dx\
y

°
dy

we have

dy=: -y'6x-y"dx'. (9)

Substituting these values, (8) becomes

\-y:{P, - Q:)-yrQ.\Sx-y;^Q,Sx:, (10)

and a similar equation holds for the lower limit.

(91. Two simple examples will serve to illustrate the pre-

ceding discussion.

First assume

U=£y'd- =£ Vdx, U, = jyx'dy =£' K dy.

Whence

^^^^ ^Jy^'' ^^'^y "^ y^' ^^~ y^' ^^~Sl''^y ^^^^y-

Now to render {^U]\ equal to \pU\ as far as the first order, we
must subtract from the former V^Sx^

—
V^Sx^, or y.'^^x^

—
y^^^^^ which will eliminate all the terms at the limits, as it

evidently should; and N— — M. Still we must recollect

that we have made [<^C/] and {_^U'^ equal to the first order

only.

As a second example, let

U^ r'y''dx:=^ r^Vdx.



I x" x'"

x" y
x'^'

^
x'^
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and if by the aid of (2) we express (5) in terms of (4), it will

become identical with (4). In like manner we might treat the

terms at the lower limit, only adding V^dx^. We also have

M
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affect the general value of U. . Hence, as there, we shall, assum-

ing X as the axis of revolution, have

and the limits being fixed, we must have, to the first order,

Now if, as usual, we make (J Evanish, we must have

M=2y-\-2a Vi +/' - A__^^ML^ = O. (2)

To integrate this equation, write

2ydy-\- 2a Vi -\- y'"^ dy — 2ay' . d yy

Now

f2a VTT7' dy = 2a \^VT7'y -f-j=y, ^/ '

and

_f2a^^_2ag^r_^l^^
Hence, by reduction, (2) gives
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and since the curve must meet the axis of x^ c vanishes, and
we must have

/ H —=r^=rz —y \yA ^
C = o. (as

This is equation (4), Prob. XVI.
;
and if we make dU z^ro,

we are necessarily led to this equation.

(93. But the equation at which we have now arrived ad-

mits of two solutions, j/
= o and y -\

— = o. The first,

however, cannot hold throughout the entire range of integra-

tion, since the surface generated is to be a given finite area,

while the second will, as we have already seen, lead to a

sphere, having its centre on the axis of x^ and is therefore ex-

cluded by the conditions of the problem.
We are naturally led next to inquire whether the solution

sought might not be obtained by combining in some manner
the preceding solutions. Thus, in the figure, let A and B be
the two fixed points. Then if the given surface be less than

TtAB'^y we may suppose the generating curve to be AECB\ and

when the surface exceeds tcAB^, we may suppose the genera-
trix to be AFDB.

Under this supposition we know that the revolution of the

semicircles will render the given integral, when taken from A
to C, or from A to Z>, a maximum, while the line CB or DB
may be considered as generating a cylinder whose .diameter

is infinitesimal, and whose surface and volume are so likewise.

Here, however, a new difficulty presents itself. For if inM
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we substitute zero for y, observing thaty will be zero also, we
shall obtain M = 2a\ so that it appears that y = o is not a

solution of the equation J/ == o, and that, therefore, if this latter

equation is to hold throughout the entire range of integration,

this solution must be abandoned also. The fact is, however,
that we cannot reject the solution y =z o because it does not

satisfy the equation J/ = o, since the question now involves a

principle of variations which we have not hitherto considered ;

and this we next proceed to explain.

194-. In former problems we have been obliged to con-

sider Sy as capable of having either sign, and therefore, when
6U was developed into a series, and the terms of the first

order transformed in the usual manner, we were compelled
to equate M, and also the coefficients of Sy^, 6y^, Sy^\ etc., sev-

erally to zero, as the only means of preventing the terms of

the first order from exceeding the sum of all the others, and

thus rendering the sign of (^6^ positive or negative at pleasure.
But by referring to Art. 99 we see that the conditions of this

problem prevent y from becoming negative, and hence when

y is zero—that is, when the primitive curve coincides with

the axis of x—we can give y positive increments only.
To determine in the most general manner what effect this

restriction would produce when applied to the present prob-

lem, let us suppose that U and V retain the same form as

before, but that the limiting values of x and y become vari-

able, so that we shall have

+J^^'Mdydx + etc., (5)

where brackets denote the entire variation of U, the etc. the

terms of an order higher than the first, and M has the form
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given in (2). If now we suppose y to become zero throughout
the range of integration, (5) will become

\PU^ =fJ\adydx-\-Qtc.=jJ'— 2r Sy dx -{- ttc, (6)

where r is a positive constant, since it appears, by referring to

Art. 99, that 2a must be essentially negative.
Since the proposed solution j/

= o does not reduce the

terms of the first order in [dW] to zero, but merely to a single

term, it is plain that this term will exceed the sum of all the fol-

lowing terms, and hence that its sign will control that of \_^U\
But because dy is now necessarily positive, the sign of this

controlling term is no longer in our power, but is essentially

negative, thus rendering [^W] a negative quantity of the first

order. Hence, if we wish to render C/a maximum or a mini-

mum, not as compared with all consecutive states of ^ which
can be produced by varying y and y', but with such only as

can be obtained by making Sy invariably positive or negative,
we see that the solution j/

= o will, in the former case, render

U a maximum, but in the latter a minimum. We may call

such maxima and minima conditional maxima or mi7iima.

Now as the sign of (5^6^ will depend upon that of the term

of the first order, we have in this case nothing to do with the

terms of the second order, and thus the problem is much sim-

plified, unless, indeed, these terms should happen to become

infinite, which would, as before, throw doubt upon the whole

solution. But this will not occur in the present case.

We see, then, that in this case, by restricting Sy to one

sign, we render it unnecessary that the proposed solution

should reduce M to zero, and also remove the necessity of an

examination of the terms of the second order. Neither was
it necessary thatM should become a constant, but merely that

it should be finite and of invariable sign. But should J/ change
its sign, we could, in the same manner as has already been ex-



DISCONTINUOUS SOLUTIONS. 253

plained for terms of the second order, cause the term of the

first order, and consequently [dU\to assume either sign at

our pleasure.

Simple as is the foregoing principle of restricting Sy to one

sign, it appears to have been first introduced into the calculus

of variations by Prof. Tod hunter, in the PhilosophicalMagazine
for June, 1866. It will, however, when somewhat more ex-

tended, afford the basis for some important investigations, and

will also serve to explain some points which have hitherto

been the source of difficulty to the student in this department
of analysis.

(95, In applying this principle to the present problem, let

us first suppose the given surface to be less than that of a

sphere having AB a.s its diameter, and let the abscissa of A
be x^, that of B, x^, and that of C, x^. Then suppose the inte-

gral to be divided into two parts, the first extending from A
to C, and the second from C to B; so that we may write

^^ly^^+iy''^^- (7)

Now, supposingM to be zero throughout the first integral, its

variation will reduce to

^a;

and putting jj/
= o, y = co

, observing that 2a — — 2r = — R,
R being the radius of the sphere, this term will also vanish.

If we vary this portion of the integral only, while leaving the

rectilinear portion unvaried, we shall, theoretically, be obliged
to examine the sign of the terms of the second order

;
and we

have already seen that this investigation is not altogether sat-

isfactory. Still, as it is well known apart from the calculus of

variations that the sphere is the solid of maximum volume for
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a given surface, we may assume that f/ will in this case become
a maximum

;
that is, that \SU^ will become a small negative

quantity of the second order.

Now throughout the second integral we have

M=2a= —2r= — R,

and the variation of this integral becomes / — R6y dx, which

must be negative, since Sy is invariably positive ;
and thus in

this case the whole integral U must become a maximum.
It should be observed that while the values of x\ and y^ are

the same for both parts of the solution, those ofy for the same

point differ. Thus for the circle y^ is infinite, while for the

rectilinear part j/ is zero, and we shall be obliged sometimes

to observe this and similar distinctions with great care.

When the given surface exceeds that of a sphere described

upon AB as a diameter, let x^ be the abscissa of D. Then we

may consider U as consisting of two integrals, the first extend-

ing from A to D, and the second from D to B, and we may
still write

This mode of considering the integral may seem erroneous,

inasmuch as it will compel us to regard x as doubling upon
itself at D, and x^, therefore, as greater than x^. But it is to

be observed that we assume that U and SU are continuous

integrals
—that is, that they are capable of being expressed by

one definite integral
—and this requires that x shall be uninter-

rupted. Adopting for the present this view of the subject,

we see, as before, that if we vary the arc ^Z^ only, (J^ must

become a negative quantity of the second order, and that if

we vary the line DB also, we shall have 6U = J^
— Rdydx,
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which is negative, as before. In this case we in reality reckon

twice the volume generated by 6y along DB, when we pass
to the derived solid.

We may, however, construct the two solutions as in the

subjoined figure, in which case we shall be obliged to con-

sider U as consisting of three integrals, and we have therefore

adopted the other construction as being more easily explained.

B i>

196, We have already shown, in Art. loi, that when the dis-

continuous solution is necessary, that necessity arises from the

fact that the conditions which require the surface to be given,
and the two terminal points on the axis of x to be also assigned,
have been so fulfilled as to render them incompatible with the

general solution. Now we shall find, as we proceed, that dis-

continuous solutions generally, if not always, arise from some

incompatibility in the conditions of the problem, and that the

conflicting* conditions are imposed sometimes consciously,
that is explicitly, and sometimes unconsciously, that is im-

plicitly. The present problem would, of itself, afford an

example of the former kind, but it is in reality onl}^ a comple-
tion of the discussion suggested by Prob. XVI., and there the

discontinuity was of the latter kind, arising from conditions

incidentally imposed, the effects of which were not foreseen.

197. We will next consider an example which will serve

to extend our theoretical knowledge, and to prepare us for

the discussion of more important questions.
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Problem XXXIII.

Let U ^^ I {y""^
—

2y)dx = / Vdx^ and let it be required

to maximize or minimize U, the limiting values of x being fixed^

those of y being zero, and it being also required that a certain

fixedpoint, whose co-ordinates are x^ and y^, shall notfall without

the required curve.

This is, in fact, merely a restricted form of Prob. V., and

we have
J/— 2/^— 2. (l)

Now if it be possible to draw between the fixed points on

the axis oi x a curve satisfying the equation M = o, and also

enclosing the point x^, y^, there will be no difficulty, and we
shall have a minimum as in Prob. V. If the point should

happen to fall upon the curve, dy^ could not be made negative,
but this would not affect the problem, since the curve would
render ^a minimum for all admissible variations oi y andy^

Suppose, however, that no curve satisfying the equation
M = o can be drawn so as to enclose or pass through the

point x^,y^. Still, as the sign of ^y is wholly unrestricted,

except at the points x^ and x^, and also possibly at the point

x^,y^, if the curve pass through that point, we feel sure that

M must vanish throughout the entire integral U. We are

therefore naturally led to inquire whether the solution might
not be furnished by drawing from x^ and x^ severally an arc

of a curve satisfying the equation M = o, the two arcs meet-

ing and not excluding the point x^, y^ ;
and such a solution

we now proceed to consider.

198. Let the arcs meet at the point x^,y^; x^ and ^fj being
less than x^. Then U may be written

U=£ydx+fydr, (2)
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where Fhas the same form as before. But although the two
arcs satisfy the same differential equation M — o, still the con-

stants which enter their equations cannot be identical ; other-

wise they would form one and the same curve, which is

contrary to our present supposition. Hence by making M
zero in (i), and integrating, the general equation of the two
arcs may be written

X

24

24

(3)

If now to the first order we take the variation of each inte-

gral in U separately, and transform it in the usual manner,

observing that dy^ and Sy^ vanish, and that the parts which
remain under the sign of integration must also vanish, because

M is zero throughout U, we shall obtain

SU=- 2y:"Sy, + 2 Y:"S Y, + 2 Y:'S Y: - 2y:'Sy:

^2y-Sy:-2Y:'SY:. (4)

Since all the variations in this equation are of unrestricted

sign, SU vnw^t vanish
;
and also if (4) be expressed so as to in-

volve only variations which are entirely independent, the co-

efficients of these variations must severally vanish. Now if

we assume that x^ does not vary, Sy^ and dY^ are the same

quantity. Moreover, from (3), we have

y:":^x,^ec, and Y:" = x,^eg. (5)

Whence

-2y:"Sy,-\-2Y:"dY,= i2{g-c)Sy^', (6)

and since Sy^ is certainly an independent variation, c and g
must be equal.
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Now consider the t^xvcis 2y^'Sy^ — 2Y^'SY^. To make
these terms vanish we may have jg^' = Y^' ,

and also ^y^— ^ Y^\
or Iz^ = o and Y/^ = o. Under the first supposition y^^ and Fg'

must mean the same thing, otherwise their variations would
not be necessarily equal.

If now we equate jj/g'^
to Y^'\y/ to Y/, and/s to Fg, taking

the values of these quantities found by differentiating (3), we

easily discover that if c and £• are equal, c^
=

g-^, c\
= g^ and

^3
=

^3> which is, as has been shown, not admissible in this case.

But suppose jg^^ = o and Fg^^ = o. Then y^ and Fg^ need not

mean the same thing, and we have only c ^^ g and c^
=

g^. But
there still remain in (4) the terms 2Y^'SYI — 2y^" Sy^\ and to

make these vanish we must have Y^" = o and yj' = o. Take
the origin midway between the points x^ and :i\, and let x^ = e

and
;t:o
= — ^. Equating the values of y^^' and Y/\ as found

from (3), we have

- + ^£-^+2g = --6ce + 2c,.

Whence, since c ^ g and c^
=

g^, c and g are zero.

The equation Y^' = o now becomes—h 2^1 = o, and the
2

equation Fg^^ — o gives —^-\-2g^=z o, impossible equations un-

less e"" and x^^ be equal, which they cannot be since x^ was
taken numerically less than x^. Hence we must abandon this

solution, since it will neither cause SW to the first order to

vanish nor to have an invariable sign.

(99. There remains but one supposition, which is that the

arcs be drawn as before, but meet at the point x^, y^ ;
and

this, which we shall find to be the correct solution, we next

proceed to consider.

It is plain that C/and also ^C/ will have the same form as

before, except that the suffix 3 w^ill be changed into 2. But it
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will not now be necessary to make all the terms in ^ Evanish,
because 6y^ and S K, are the same quantity, and dy^ is neces-

sarily positive. Now, as before, the terms involving these

two variations will become 12 {g— c) Sj/^, and it will be neces-

sary to make the remainder of (5^ C/ vanish, because it contains

only variations of unrestricted sign.

We have then to examine whether we can make these

terms vanish
;
and if so, what will then be the sign oi g — c.

To make the terms involving 6y^' and d F/ vanish, we have,

as before, .

F/'=j/' and F;=j/,'. (7)

The first equation being necessary, and the second also neces-

sary unless F/^ = o and j//'
= o, a case which we shall subse-

quently consider.

To make the terms involving d F/ and Sy^' vanish, we have,

as before,

F/^ = o and y/' = o. (8)

We have also, from the other conditions of the question,

7o = o, Y, = o, V,=f,; (9)

and these equations, together with (3), which still holds, will

be sufficient for our purpose.

200. Take the origin as before, and also denote x^ by a,

and jTg by d. Then finding, from (3), the successive differen-

tials of y and F, (7), (8), and (9) give, by substitution.

— + 6ac-\- 2c, = -- + 6^^+ 2g,,

(10)
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3 3

^+6^^ + 2^x=0, ^--6ce^2c, = o\ (II)

24

24
^^^ -j- iTj^''^

—
^2^ -|- ^3

= o
;

(12)

24

24

+^'«'+<ri^'+<r3^ +^3 = ^.

+ ^<^^ -f" ^l^'^ + ^3<^ + ^3
= ^.

Now from (11) we have

^1 = -
3<^^ and c^

= ye ,

and the first of equations (10) becomes

(13)

(14)

(15)

and solving for g-e, and then adding g-e to both members, we
can obtain

_ 2eg-g-c
a-\- e

(16)

But e is positive ;
and estimating x toward a, a will also be

positive, so that the sign of ^ — <: will be the same as that of

g, which we must next determine.

Subtracting (12) from (13) and dividing hj a — e, we have

,^3 +<^i(^ + ^) +<^(^' + ^^ + e")

g^^g{a'-2ae-2e')-\-

a'+ a'e-^ae'+ e'

24 a — e

24
(17)
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the last member being obtained by substituting for g^ its value

from (14). In like manner, from (12) and (13), we obtain

c,-\- c(a' -^ 2ae - 2e')A^ -^
XA_ ^ ^^. (18)

Now subtracting (18) from (17), substituting for c its value

^—
;

—^- from (15), and reducing the second member to a com-
a A^ e

mon denominator, we have

—
c^-^g \

a^ — 2ae — 2e^ — {a"+ 2ae — 2/) \
t a -\- e )

+

+
a^e — 5^^ _ 2be

12
~

a" —/

From (14) and (15) we have

c.-g.= 2>e{c-\-g\ (20)

Now from the second of equations (10), we obtain

g,-c, = 2a{c,
- g) + ia\c - g)

= 6ae{g+ c)
- 3a\g- c)

=
|^, (22)

the second member being obtained by (20), and the third by

(21) and (16). Hence, by substitution, (19) becomes

a'e — ^'
,

'^V — 5^' _ 2be
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Whence

Now we will so estimate y as to make b positive. Then, since

e exceeds a, to make g positive, we must have

or

2-^x5^'-
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Then from (11) and (24) we readily deduce

a-\- e J
• a — e

p- = '— and r = .^
12 12

Hence d^^ becomes in this case

dU^ I2{g— c) dy^ ^ — 2e (5>,,

which, as ^y^ is still positive, must be negative.
Thus it appears that this solution will render U a maxi-

mum. Now in the present case g is necessarily negative, and

we have seen that when Y^' = y^' and F/ = 7/, g is neces-

sarily positive. Hence, when we satisfy the first of these

equations by making Y^' and y^' severally vanish, the second

cannot hold true. We see, then, that the minimum solution

consists of two arcs which satisfy the equation M = o and

meet at the point x^, y^, so as to have there no abrupt change
of direction, and to make their radii of curvature at that point

equal and finite.

202. In closing this discussion we must observe, first, that

when we propose to make the two arcs meet at the point

;r„, y^, it is by no means the same as if we had been required
to draw each arc so as always to pass through the two fixed

points. For then y^ would have no variation, and we would

treat each curve separately by the well-known rules of varia-

tions.

In the second place, the terms maxima and minima are

here also used in the technical sense already explained, and

we must be careful not to say that the present solution gives

the least value of W. For B being the point x^, y.^, we can, by
a construction hke that of the figure, make U as small as we

please.
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All that follows from the preceding discussion is, that if

we draw two arcs as required by the solution, and then,

regarding this curved line as a primitive, pass to any other

curved line which can be derived from the first by infinitesi-

mal variations of y and y" ,
the variation of y^ being positive,

U will be thereby increased by a quantity of the first order.

If we make dy^ zero, the proposed solution will reduce the

terms of the first order to zero, and we shall be obliged as

usual to appeal to those of the second order, which will be

dU= r^dy"^ dx + r^d Y"'' dx,

which, being positive, will render U in this case also a mini-

mum. ,

203. We may now with profit consider partially the gen-
eral theory of discontinuous solutions.

Suppose we wish to determine the relations between x
and y which will maximize or minimize the expression

U —
J^ Vdx, V being, as usual, any function of x, y, y', etc.

Then, after the usual transformation, we may write

SU=L,— L,-\r r^M dy dx,

where L, and L^ have the well-known form of the terms at the

limits. Now if no restriction be imposed upon ^y, we know
that M must vanish throughout the entire range of integra-

tion, and likewise Z^ and L^ must vanish.

But suppose the problem be such that ^y must always be

positive or always negative ;
then it may not be necessary to

make M vanish, provided it be of invariable sign, and pro-

vided, also, that the terms at the limits either vanish or be-

come of the same sign as the unintegrated part; in which case
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(J C/ will become a quantity of the first order, and there will

be no need of examining the terms of the second order.

Suppose, next, that U is such that it may naturally be
divided into a number of integrals, say n, the first extending
from x^ to x^, the second from x^ to x^, etc., the last extending
from x^n_^ to x^ ;

and suppose dy is of invariable sign through-
out one or more of the intervals into which x is divided, but

is unrestricted throughout the others. Then M must vanish

throughout the latter
;
but if throughout each of the former

M be of invariable sign, and if the sign of Mdy be the same

throughout each, M need not vanish provided certain con-

ditions can be secured at the limits, and we shall have a dis-

continuous solution, made up of curves satisfying different

differential equations.

But when the sign of ^y becomes necessarily invariable

throughout any interval, we shall find that this restriction

results from the fact that there is throughout that interval

some boundary which the required curve is forbidden to pass ;

and in order that the sign of Sy may be made invariable by
this boundary, the required curve must, throughout that inter-

val, coincide with it. It will, therefore, readily appear that

whenever any portion of the required solution does not satisfy

the equation M — o/\t can consist of nothing but a portion of

some boundary, the nature of which will be generally known.

Thus in the case of a sphere, this boundary, although not ex-

plicitly assigned, is easily seen to be the axis of x, the implicit

condition that y is not to become negative making this the

boundary below which y cannot pass.

If, however, the sign of ^y be restricted for some point or

points only, as in the preceding problem, the equation M= o

must hold throughout U, although the equations of the arcs

for different intervals may differ widely in the values of the

constants which they contain.

It will, we think, now be evident that, in general, when a

discontinuous solution presents itself, it will be made up in
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one of these three ways : first, some combination of arcs satis-

fying the equation J/ = o
; second, some boundary or certain

boundaries
; third, some combination of this boundary or these

boundaries, with arcs satisfying the equation M =^ o.

204. Let us now consider the integrated part of dU, when
U is divided as explained above.

As the different portions of the discontinuous solution meet
at the points whose abscissae are x^, x^, etc., jk will have the

same value for two curves meeting at those points, but the

values ofy , y^, etc., for two curves at their points of meeting

may differ widely. To recognize this distinction, we employ
the suffixes 2 and 3 to denote quantities both of which corre-

spond to x^, but belong to different curves meeting at the

point x^,y^, and we divide x into x^, x^, x^, etc., the last being x^,

the suffixes 3, 5, etc., being reserved for the second of the two

quantities corresponding to x^, x^, etc.

Now performing the integration for each integral sepa-

rately, the first gives L^ — Z^, the second L^ — Zg, etc., so that

the entire integrated part of (^^ becomes

Zj
— Zo+ Z. — Zg+ Z, — Z54- etc. +Z2n_2—Z2^_„ or Z. (i)

Now if all the variations involved in Z be of unrestricted

sign, it must vanish
;
and also if Z be transformed so as to con-

tain independent variations only, the coefficients of these vari-

ations must severally vanish. But suppose some of the varia-

tions involved in Z to be of restricted sign. Then, the other

terms having vanished as before, it may not be necessary to

make these terms vanish also. For if these restricted varia-

tions be related, suppose them to have been reduced to inde-

pendent variations, and let H, Z, K^ etc., be the several pro-
ducts of each variation and its coefficient. Then we can

reduce any of the quantities H, Z, etc., to zero by making its

variation factor vanish. If, therefore, these quantities be all of

Uke sign, that of Z is determined
;
but if, on the contrary,

they be not, Z can be made positive or negative according as
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we reduce to zero the negative or positive quantities. But

suppose i/, /, etc., to be of like sign, making that of L the

same, and that this sign does not conflict with that of M 6y in

the unintegrated part. Then- dU becomes a quantity of the

first order, having a fixed sign, and we need not examine the

terms of the second order. But if H, /, etc., be of unHke sign,

or if their sign, when the same, conflict with that of Mdy, L
must vanish altogether.

In equation (i) we have assumed that no portion of the

axis of X is to be counted twice, as in Prob. XXXI I., where

the sphere extends beyond x^, because such cases will seldom

occur. When, however, they do arise, Z, although differing

somewhat in form from (i), can be readily found by integrat-

ing each portion separately, as before
;
and then all the condi-

tions which we have just explained will hold true for this case

also.

Problem XXXIV.

205, It is required to determine what will be the solution of
Prob. VII. when the two fixedpoints are so taken that no catenary

ca7i be drawn between them having its directrix on the axis of x.

Here

U lyv.^-y'^dx^Sydx (I)

and

Now it is natural to inquire, first, whether any restrictions

have, either expUcitly-or implicitly, been imposed upon the

sign of Sy^ in virtue of which the equation J/= o need not hold

throughout U. For if not, the solution can consist of noth-

ing that will not satisfy this equation. Now Vdx in (i) is the
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value of any element of the generated surface divided by 27r,

and it does not seem reasonable to suppose that this surface

can ever become negative. Hence, since we take Vi-^-y'"^

positively, it would appear that y cannot be negative ;
that is,

that dy, along the axis of x, must be positive.

We infer, then, that should the solution contain anything
which does not satisfy the equation M —

o, it can only be

some portion of the axis of x, and that such portions will be

likely to occur.

206. Let us next examine the equation i)f= o to see what

can be obtained from this source.

This equation will give

/ vY+y^ dy = vr+y-^y -f-y^. ^/

^'''+y'-':7=k^^ + fy^-:
yy

Vi-\-y" y Vi+y
Whence

c.

y _
Vi +y'

(3)

This is the same as equation (2), Art. 59, so that this is the

only condition which can be obtained from the equation
M=o.

Suppose now that we digress from the method of solution

pursued in Art. 59, and make c zero. Then (3) will give either

jj/

— o ory =00
,
and these two solutions, although neither can

be employed alone, can be combined.. For let A and B of

the figure be the two fixed points, CD being the axis of x.

Then the discontinuous solution proposed will be the broken

line A CDB.
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Thus in this case, as in Prob. XXXI I., the solution y = o,

which arises from the same conditions in both, is suggested as

one solution of the equation J/= o, which it does not, how-

ever, in either case satisfy. But this suggestion was not

necessary, as this solution was anticipated by the reasoning
of the preceding article, which would be equally applicable
to Prob. XXXII.

207. We now proceed to show that the proposed solution

will minimize U. As we cannot treat infinite quantities by
the methods of variations, we shall, to avoid their occurrence,
transform to polar co-ordinates. Take some point within the

figure as the pole, the initial line being parallel to CD. Let

V, the angle between r, the radius vector, and this initial, be

estimated in the direction A CDB, and let k be the distance

of the pole from CD. Then any element of the generating

curve will be Vr" ^r'"^ dv, and its distance from CD will be

k —r sin V. Then, ds being an element of the surface.

ds = 27t{k — r sin v) Vr^ -\-^ dv.

Whence

U=S^yk-rsxnv)^^^^^^dv=£ydv (4)

and

=
X'' I

~" ^^'+ ^'' sin vSr-^zrdr-^ zr'Sr'
[
dv. (5)



270 CALCULUS OF VARIATIONS.

But since the proposed solution cannot be represented by the
same equation throughout, (3) and (4) must, without in any
manner changing their form, be written as three integrals

—
that is, three times with different limits—the first portion, A C,

extending from v^ to v^ ;
the second, CD, from v^ to v^ ;

and the

third, DB, from v^ to v^. Then, transforming 6U in the usual

manner, we have

6U= {zr'Sr)- {zr'Sr),-^ {zr'Sr\- {zr'dr\-\- {zr'dr),- {sr'dr\

-f fj^' I

_ Vr'+ r'' sinv + zr —
-^

zr' \ drdv.
(6)

Now the suffixes 2 and 3 relate to C as being on the two
lines AC znd CD, and the same is true of the suffixes 4 and 5,

so that r, = r,, v^ = v„ r,
= r„ v, = v„ Sr, = dr„ Sr, = Sr, ;

while r/ and r^' differ, as do also r/ and r/. Now dr^ and 6r^

are zero, the points A and B being fixed
;
and although the

other suffixed variations need not vanish, still at the points C
and D, for either line, we have k — r sin v = o\ so that all the

integrated terms in (6) disappear, and we have left only the

integral, which must be considered as divided into three parts,

as just explained.

208. We may now write

dU =fJ^MSr dv -^fJ'Mdr dv -{-fJ^MSr dv, (7)

where

M=. — Vr'+ r'' sin V + zr - -^ zr\ (8)dv ^ ^

Now consider first the second integral. Along CD we have

y^ — r sin ^ = o, so that M — — X^r"+ r"" sin v, a negative

quantity of invariable sign. But along this Hue dr is always
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negative, so that every element of this integral becomes a

small positive quantity of the first order.

Let us now examine the sign of the first integral. Along
AC WG have r cos v a constant, say c, so that we find

r sin V c sin v

cos V cos'^ V
*

COS^ V

zr =

r = = ^-, Vr 4- r ' ^
cos Z^ COS V

kr cos^ 7/ r^ sin z^ cos^ ^

c c r cos z/

= k cos V — r cos 27 sin v =^ k cos v — c sin ^'.

Whence

J/ = ^— 4- /^ cos V — c sin ^'

cos z^
'

dv

. , •
\ sin e; )

\k cos V — c sm z') y
cos 2^ )

c sin ^' •
, 7 </ ( , . c sin 27 )= c sin V -\- k cos 2^ — —— ^ ye sin z/ y .

cos V dv
{

cos V \

Differentiating the first term within the parenthesis, and also

putting for sin^ v, i — cos^ v, we may write

,^ ^ sin ^ .
X
d

\M= ^ sm ^ 4- ^- A

cos 27

. d
\

c
\

-{--T-\ ^ cos^
y ,

dv [ cos V
)

which will be found by differentiation to reduce to zero.

Similarly we shall find that M will vanish along the line BD
;

so that if we vary the whole line ACDB, or CD only, SU will

become a positive quantity of the first order, and we have a

minimum.

209. If, however, the fine CD be not varied, we cannot,
since the terms of the first order vanish along AC and BD,
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assert that U will be a minimum without examining the terms
of the second order; and this we 'next proceed to do.

Putting u for ^r"+ r'' and Z for k — r sin v, these terms
are

)

[ L

2r sin V
,

Zr'^'
Sr'

+D
2r' sin V 2Zrr''

2«^'^o (9)

Now the second integral in (9) can never be negative, so that

we need only transform the first. We have

rr' sin V .
0. / / _ ^r'r' sin v

f* ^
^^ '^' ^in v Sr

^ u
'

u ^ dv 2L

' dv

Sr^r' sin v
. f^.J^ Sr Sr'dv - fsr'# ^l^Hi^. dv.

^ dr Sr'dv = Sr^r' sin v fSr'
d r' sin V

dv It

.dv. (10)

Now we must observe that each integral is to be consid-

ered as divided into three integrals, identical in form but with

different limits, so that the term Sr will, as usual, ap-

pear with the sufhxes o, i, 2, 3, 4 and 5. But since Sr now
becomes zero at the points C and D, as well as at A and B,



DISCONTINUOUS SOLUTIONS. 273

all these limiting terms must vanish, and then by the aid of

(10) the first integral in (9) becomes

_ p ( r^._ _l_d_ r^nj;
| ^^^^ ^ _ T'^^^^^, („)

«^^-o
[

U 2 dv U )
«^^o

Now along A C we have, as before,

c , c sin V ^ / \rco^v — c, r=
,

r— —
-, u = --, (12)

cos V cos V cos V

so that along this line we have

N= sin z> cos v cos' v = o,
2 dv

and similarly, N will also vanish along DB^ because there we
shall have r cos v = — c. Thus, finally, since ^r and ^r' are

zero along CD, the terms of the second order reduce to the

second integral in (9), which, as we have already seen, can

never become negative.

210. It is plain that the discontinuous solution which we
have just examined exists even when the fixed points are so

taken that a catenary is admissible. But to determine in this

case which of the minima gives to U the smaller value is a

problem of the differential and integral calculus solely, and for

this purpose we have the following formulse. For the discon-

tinuous,

s being the entire surface. For the continuous, let PT be any
line tangent to the catenary at P, and meeting the axis of x at

T, the abscissa of which is x^, and let 5 denote the surface

generated by PT, while s denotes that generated by the por-
tion of the catenary between P and its lowest point. Then,
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regarding x^ as positive or negative according as P and T are

on the same or opposite sides of the axis of y., when it passes

through the lowest point, we have

in which a is the well-known constant of the equation of the

catenary, and can be calculated approximately when the co-

ordinates of the fixed points are given. It will be found, how-

ever, that sometimes the continuous, and sometimes the dis-

continuous solution will generate the smaller surface. ^

211. We have seen by the reasoning of Art. 5 that the cal-

culus of variations is not theoretically bound to furnish all

possible solutions
;
and since two may exist in the present

problem, it is natural to inquire whether there may not be

another, which will render the surface less than does either

of those which we have considered. We reply that, while

theoretically such might be the case, still no such solution has

ever been discovered, and there would seem to be little doubt

that one of the two already examined will always give the

least, as well as a minimum value of U.

In fact, we are now beginning, and shall continue, to verify
the remarks of Art. 14, and to show that, although subject to

some restrictions which would seem to greatly limit its power,
the calculus of variations is in reality capable of furnishing

nearly all the solutions pertaining to the maxima and minima
states of irreducible integrals. We shall find, moreover, that

these solutions will generally in some way present themselves

as solutions of the equation M—o, although they may in

reality not satisfy that equation at all.
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Problem XXXV.

212. A projectile which is acted upon by gravity alone is to

start from one fixed point and to pass through another. It is re-

quired to determine the nature of its path, so that the action 7nay

be a minimum.'^

Assume the origin at the starting-point, and estimate x

vertically downward, and let the initial velocity be s/2ga.

Then we know that the velocity of the projected particle at

any point of its path will be ^2ga(xT\- a). Hence

u=X" n^ +«)(!+/') dx =£' vdx. (I)

Whence, in the usual way, we obtain

So that

X^ a — c

and, by integration,

y — c^— ±2 Vc{x -\-a
—

c). (3)

Since X and y are simultaneously zero at the starting-point, we
have

— c^= ±2 Vc{a
—

c)

and (3) becomes

y±2 Vc{a — c)
= ±2 Vc(x+ a — c). (4)

* See Todhunter's Researches, Chap. VIII.
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If c(a — c) be positive, (4) represents two parabolas, and
we must now consider whether these parabolas can be made
to pass through the second point. We have

y,±2 Vc{a -c)= ±2 \/c{x, + a —c\ (5)

so that, squaring, we obtain

Whence

( J,'
- ¥x^" = i6y,'c(a

-
c).

Hence it appears that c{a
—

c) can never become negative, and

(5) will therefore contain no imaginary quantity, unless c be-

come imaginary. But the last equation may be written thus:

i6c\x: + j^)
-

^cy^ix, + 2a) +y: = o
;

or, dividing by the coefficient of ^^ i^ may be written

c'-2Pc+Q^o. (6)

From (6) we may obtain the values of c, which, since P
and Q are positive, will be real so long as Q does not exceed

P^ the two roots being equal when P' = Q. Now the condi-

tion P' > or = Q gives, by reduction,

y,' < or =4a{x,-\-a). (7)

Hence we see that if the first member of (7) exceed the sec-

ond, c in (5) can have no real value ; if the members become

equal, c can have but one value
;
and if the first member be-

come less than the second, c can have two real values.

Now it is evident that for any given values of x^, y^ and a,

but one of the forms of (5) can be true for the same value of

c, and that therefore we can have, passing through the two
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fixed points, as many parabolas as there are real values for c.

But (7), when its members are equal, is itself the equation of

a parabola, which may be called the limiting parabola. For

we see that if the second point lie without this parabola, it

cannot be joined to the first by any parabola which will sat-

isfy all the conditions of the question, so that the solution, if

one exists, must be discontinuous. If the point be on this

parabola, one parabola only can be drawn
;
w^hile if the point

be within the limiting parabola, two parabolas can be drawn.

Of course when the values of ^,, j, and a are fully given,
we can determine the one or two equations involved in (5), so

that they may be without ambiguity of sign. But when two
values of c exist, we cannot determine which must be taken,

unless we fix the angle which the projectile in starting makes
with the horizontal, two angles being admissible.

213. Let us now examine the terms of the second order.

We have

Now when x decreases algebraically
—that is, when the projec-

tile is ascending
—we must regard the velocity as negative.

But then ds is also negative, so that, both radicals in (8) be-

coming negative, SU wiW be positive. When x increases—that

is, when the projectile is descending
—both radicals become

positive, so that SU'is positive.

If, then, the arc of the parabola with which we are con-

cerned does not include the vertex, we undoubtedly have a

minimum
; but if we are required to reach or pass beyond the

vertex, then, sincey at that point becomes infinite, our conclu-

sion that we shall have still a minimum cannot be regarded as

altogether trustworthy, and we shall be obliged to resort to

another method of investigation.
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214. Let us now assume the horizontal as the axis of x,

estimating y vertically downward, and taking the origin at the

vertical distance a above the first fixed point. Then we shall

have

, u=iywTr)dx=fydx. (9)

Whence, by formula (C), Art. 56, we have

Hence

so that

Whence

x= ±2C,Vy-C, + C,

y=C^ + ^—-^. (10)

Differentiating (10), we have

/ =^'. (n)

Now (10) is the equation of a parabola when the directrix

is taken as the axis of x, the origin being assumed at pleasure,
and C^ is the abscissa, while C^ is the ordinate of the vertex,

46^1 being twice the parameter, or 2p. For making y' zero in

(i i), we have x = Q, and then (10) gives, for the same point of

the curve, y = C,. Now, changing the origin to the point

Q, C^, we shall obtain, after interchanging the variables x
and y, y" = a^C^x = 2px. Hence we see that the distance of

the directrix above the starting-point is always numerically

equal to a, or the height due to the initial velocity.
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Now we know that the focus of any parabolic path de-

scribed by a projectile moving from ^ to ^ must be at the

intersection of two circular arcs, described with the same
radius a from the two points respectively as centres. But if

a be so assumed that these circles cannot touch, there can be

no continuous solution, and the point B will be without the

limiting parabola. If the circles touch, one parabola can be

drawn, having its focus upon the line AB, the point B being
then upon the limiting parabola ;

while if the circles intersect,

there will be two parabolic paths along which the particle

may move, the first having its focus below, and the second

above the line AB^ the point B being in this case within the

limiting parabola.

215. It will be seen that by changing the independent
variable we avoid any infinite value of y, and we will now pro-
ceed to show that when the parabolic arc has its focus below
the line AB, the action becomes a minimum, but that when
the focus is upon or above AB, the action is not a minimum.

Employing Jacobi's method, we have, from (9),

or -^ —
dr ""

virryy
(13)

which is always positive, and remains finite throughout the

range of integration, so that we shall have a minimum if we
can take u so that it shall not vanish within the same range,
and that u^ may remain finite. From (10) we have

the value of y' being taken from (11). Therefore the most

general value of u is

u=i- /' - Ly\ and u' = - 2//' - Ly\ (15)
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Now because y' and y" remain finite, u' will not become infi-

nite
;
and to make u vanish, we must have

L=^,-y=-H, (i6)

and we shall have a minimum if the range of H over all real

values be only partial, but none if it be complete.

216. In order that H may range over all real values, it

must certainly touch zero and infinity. The first condition

requires 7' to become ±1, and is fulfilled at both extremities

of the latus rectum, and there only. The second requires y'

to become either zero or infinity, the latter condition being
never fulfilled, and the former at the vertex only. Now let

y^' and y^ be the values of y' at the extremities of any focal

chord. Then, because the tangents to the parabola at these

extremities meet at right angles upon the directrix, we must

have y' = „ and hence we shall find that

y:---r or H,^y:-~ or H,.
)\ y^

Therefore as H in this case starts with a certain value, changes

sign by passing through infinity at the vertex, and returns to

its initial value, its range must be at least complete, and we
have not a minimum. If the arc were still greater, the range
of //"would be more than complete.

Now H can return to its initial value but once, although
it may pass that value. When the initial value is zero, this is

evident, since, as we have seen, there is but one other point at

which H can be zero. When the initial value is not zero, //

must change sign twice before returning to its initial value,

and four times before returning to it a second time, and this

latter is impossible, since there are but three points at which

H can change sign at all.



DISCONTINUOUS SOLUTIONS. 28 1

Since, then, the values of H at the extremities of any focal

chord are equal, they will be equal nowhere else, and the

range of H is then just complete.

If, therefore, the arc in question be less than that subtended

by a focal chord, the range ofH is not complete, and the action

becomes a minimum. In other words, we see that the action

will not be a minimum unless the second fixed point be so situ-

ated that tw^o parabolic arcs are admissible, and then for that

path only which has its focus below the line AB.

217- Since there can be no continuous solution when the

second fixed point lies on or without the limiting parabola, we
next inquire whether there ma}^ not be some discontinuous

solution or solutions in these cases.

We first ask, then, whether we have unconsciously imposed

any boundary along which the sign of Sy is fettered ; because, if

not, the solution can, at least so far as discoverable by the cal-

culus of variations, consist only of some combination of lines

satisfying the equation M— o. But we see from (lo) that y = o
is such a boundary, since to make y negative would render the

velocity imaginary, and with the notation of (i) this boundary
is given by the equation x-\- a=^o.

218. Let us next see what can be obtained from the funda-

mental equations given by the two methods previously em-

ployed. These are

because there is no escape from these, if we makeM vanish in

each case. The first of these equations is satisfied by y == o

and ^ = o, and alsoy — oo
,
because in the latter case we ob-

tain X -\- a^zc.

Passing for the present the question of combining y = o

and y == 00
,
it is suggested that our solution may consist, m
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part, of some line parallel to the axis of y. But because y'

would here become infinite, we cannot, while keeping the ver-

tical as the axis of x, investigate the variation of C/ along this

line. But the second of equations (17), in which the axis of x
is horizontal, offers the same solutions as the first, since it is

satisfied by j' = 00
, 6^1

= o, or by y' = o, which gives y = C^j

which is the same condition as was before expressed by
X -\- a = o.

With this change of the independent variable, we can ex-

amine the condition which we were before unable to investi-

gate ; namely, whether the solution may be composed, in part,

of some horizontal line.

Now if this horizontal be any other than the boundary
/ = o, it must, since along it ^y is of unrestricted sign, satisfy

the equation M= o. But this equation, when C/"has the form

given in (10), becomes

M =
2 Vj dx ^\^ y'

(18)

But when we puty = o and y = C^, we have M=^ -—_: and
2 Vl,

as this does not vanish, this solution must be abandoned.

2(9. As the horizontal line j/
= o is not yet known to be

excluded, since it need not satisfy the equation M=^o, and as

y' z=i 00 was also suggested as a solution, it remains to consider

whether the solution may not be found by combining this hori-
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zontal with the verticals through the two fixed points, as in

the figure, where the path of the projectile is supposed to be

ACDB.
Of course a particle could not move from A to B along this

broken line, because its velocity along CD would become zero.

But we can draw a curve indefinitely near to A CDS along
which the velocity will not become exactly zero, and then we
shall find that the action along this curve will be greater than

that along the discontinuous path.

To determine whether the line ACDB is the path of mini-

mum action, we shall, on account of the infinite value of y' ,

need some other method of investigation, and we might try

transforming to polar co-ordinates. Still an analytical demon-
stration will not here be necessary. For let AC and At be

equal in length, and let them be divided into the same number
of equal and infinitesimal parts ;

and let PQ and pq be a cor-

responding pair, so that AP will equal Ap. Then because P
is vertically higher than /, the velocity at P will be less than

that at/, and the action through PQ less than that through/^.
Hence it appears that the entire action through ^(T is less than

that through Ac, In like manner we show that the action

through BD is less than that through Bd. Now the action

along CD is zero, while that along cd is not
;
so that it is cer-

tain that the action along the primitive A CDB is less than that

along the derivative AcdB^ even if we do not vary the bound-

ary CD, and much more so if we vary that line.

220. It is easy to see that the discontinuous solution which
we have obtained is admissible even when the parabolic path
also renders the action a minimum. When the second fixed

point lies on or without the limiting parabola, the discontinu-

ous solution, being the only one which presents itself, undoubt-

edly renders the action the least possible, as well as a minimum.

When both minima are admissible, we shall find that some-

times the one and sometimes the other will give the smaller
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minimum
;
and there can be little doubt this smaller minimum

is in every case the least possible value also of the action.

The comparison of the two minima, when they exist, must

be effected by the ordinary calculus, but we subjoin, without

proof, the necessary formulae. (See Todhunter's Researches,

Art. 173.)

Let g be the force of gravity, r^ and r, the radii vectores of

the two fixed points, C the length of the chord joining these

points, and w the action. Then for the parabolic path, accord-

ing as it subtends less or more than two right angles at the

focus, we shall have

or

w =
:^i(^

+ ^+ 0«+ ('-0+'-.
- Cf\-

(19)

For the discontinuous solution the action is that due to pass-

ing along the verticals only, and is

^=^(..+..).
(20)

221. The principles which have been previously explained

regarding the origin and nature of discontinuous solutions are

equally applicable when polar co-ordinates are employed, and

we shall find in thi-s case also that they are generally in some

manner presented as a solution of the equation J/= o, although

they may not, and need not always, really satisfy that equation
at all. Let us now briefly consider a problem of this kind.
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Problem XXXVI.
It is required to determine whether there be any disco7itinnoiis

solution involved in Prob. XXII.

We have seen, Art. 123, that when the second fixed point
lies without a certain limiting ellipse, no elliptic arc, satisfy-

ing all the conditions of the question, can be drawn between it

and the first fixed point ;
and that even when it is situated on

the limiting ellipse, and there can be one eUipse drawn, it does

not render the action a minimum. It appears, then, that if

there be any solution in these cases, it must be discontinuous ;

and the analogy of the last problem would lead us to expect,
what is indeed the fact, that even when a continuous solution

exists, a still smaller value of the action is in some cases given

by a certain discontinuous solution.

222. Now the fundamental equation of this problem is

equation (8),

Wr""

where

W^ i/--i, (2)r a ^ '

and we cannot help arriving at this equation if we make M
vanish. But if in (i) we make c zero, that equation will be

satisfied by / = ^ or W— o. The first would indicate that

we might employ some portion of the radius vector drawn to

one or both the fixed points, or of these radii produced.
To interpret the second we have

W' = --- = o,
r a

so that
I I- = —

,
r = 2a.

r 2a
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That is, it is suggested that a portion of the solution might
consist of a circular arc described from the centre of force

with a radius 2a.

Let O be the centre of force, A and ^the two fixed points.

Then the discontinuous solution which is proposed is the path
A CDB, where CD is the portion of the above-named circular

arc intercepted between OA and OB produced.
But before considering whether the proposed solution does

render the action a minimum, we inquire whether any bound-

ary exists along which the sign of Sr is fettered, and which
need not therefore satisfy the equation J/= o. Now the value

of the velocity v'
, equation (4), Art. 121, is

\/^l--l=WVf, (3)

where / is the intensity of the attracting force at a unit's dis-

tance. When, therefore, VV vanishes and r becomes 2^, v'

becomes zero
;
and when we make r greater than 2a, v' be-

comes imaginary. Hence the arc CD is itself such a boundary,

unconsciously imposed, and along it ^r must be negative and

the action zero.

223. Owing to the infinite value of /, we cannot deter-

mine, by adhering to polar co-ordinates, whether the pro-

posed solution Avill render the action a minimum or not, and

the natural mode of procedure would be to express the value

of dU\n rectangular co-ordinates, by which we could escape
infinite values. But this will not be necessary, because, by
reasoning precisely similar to that employed in Art. 219, it

will appear that the action through A C and DB must be less

than that through any curve of the same length which can be

derived by the method of variations, and the arc CD cannot

be reached by curves which do not exceed these lines. Then
as the action is zero along CD^ it is evident that the discon-
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tinuous path A CDB will render the action less than would any
other path which could be derived from- it by the calculus of

variations.

Problem XXXVII.

224-. A steamer is to pass from one port to another on a

stream whose current flows always in the same direction, Jier speed

beiitg dependent solely upon the angle which Jier course makes with

the directio7i of the current, together with certain constant quanti-

ties. It is required to determine the fo^m of her path, so that the

passage may be made in the shortest time possible.

Assume the course of the current as the axis of x, and esti-

mate X in the direction of its flow. Also let v be the velocity,

t the time, and ds an element of the required path. Then
since v depends, in some fixed manner, upon constants and

the angle between the path and the axis of x, we may write

V = F{y'), and

ds VI -\-y'\lx ,
, y Jdt — - —

^-^-
—

/(J )
dx = fix,

V r

Hence the expression to be minimized is ^= / fdx, where
t/ Xq

it is evident that /can become any function whatever oi y'.

Now we have already seen. Art. 56, that the solution of

this problem is given always by a straight line, and there is

no escape from this conclusion so long as we make M vanish.

For

dx dy dx

so that if M be zero, we cannot help obtaining f —
c\ and to

satisfy this equation, y' must certainly be a constant, which
w^ill lead to a right line as the only possible solution. But
since the required line is in this case to pass through two fixed
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points, we seem at first to be restricted to a single course for

all possible conditions, whereas a little reflection will serve to

show us that we could easily impose such conditions as would
enable us to shorten the time of passage by pursuing a path
not always coinciding with the straight line joining the two

points.

It appears, however, upon examination, that the equation
M—o must hold throughout the entire course, as we cannot

find that any boundary has been in any way imposed along
which Sy or dy' will be of restricted sign. We feel certain,

therefore, that no solution can be obtained, at least by the cal-

culus of variations, except a right line, or one composed of

right lines. But sincef is a constant, suppose that constant

to become zero. Then if the equation f'-=o furnish more
than one real value of y\ we may have two or more lines

meeting at finite angles. For the terms free from the sign of

integration, which are f^'^y^
— fj^y^ + etc., would vanish,

because f would vanish for either of the meeting lines,

although the values oi y' for the two lines might differ. We
shall, however, illustrate this problem by considering some

particular cases.

225. 1st. Let a be the angle between the path and the axis

of X, which is not to exceed —
,
and suppose the velocity v to

vary as cos a = = . Then in this case U be-
sec a 4/i._Ly2

comes U=£\i ^y')dx =fj^'fdx, giving f ^ J- = 2/.

Now y' must have the same value throughout the integral,

because if it change value* at any point x^, j/^, we shall have,

as already explained, without the integral sign, after trans-

forming the term of the first order in the usual way,

f:^y.-f:^y.. or 2{^y:dy,-y:dy^, or 2(j// -X^Jo,



DISCONTINUOUS SOLUTIONS. 289

which must vanish, since Sy^ may have either sign. Hence, in

this case, the minimum time will be gained by following the

right line joining the two points ;
and because only one value

ofy is admissible, we infer that this path gives also the least

value of /, t being certainly a minimum, since the term of the

second order is / Sy'^dx. In this case, then, there is no dis-

continuity, but we now pass to an example in which it occurs.

226. 2nd. Let

2^4
so that

/=-?+f <.)

where b is some constant. Then proceeding as usual with the

integral U= J fdx, we obtain

/'=/(/'- 1) =^- (2)

Whence we also find

P-/"-3/'-i. (3)

Now if we solve (2) without restriction, we shall obtain

a straight line, which must of course pass through the two
fixed points, and we will first examine whether this continuous

solution will always render the time of passage a minimum.
Now since the term of the second order in 6U is

-jy'^y"'^-^2^^o
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we shall have a maximum or a minimum according as f" is

negative or positive. Hence, from (3), observing that tan^

— = —
,
we see that when the angle is less than —

,
the time is63 6

a maximum
;
but that if the ports were so situated that the

line joining them must make with the axis of x an angle

greater than 30°, the time will become a minimum.

227. Now when we have shown t to be in any particular

case a maximum or a minimum, it does not follow that we
have obtained its greatest or least value, since some discon-

tinuous solution may give a greater maximum or a smaller

minimum. Now if there be any discontinuous solution, it

must cause f or c in (2) to retain the same value throughout
U, otherwise there would arise terms of the form {f^' —fj)^y^,
which would not vanish. Any values, then, of y' which will

satisfy the equation /' = c, in which we may give to c any
value we please, only retaining the same throughout U, may
be combined into one solution, provided this combination will

enable us to pass from one fixed point to the other, and pro-
vided also that the various parts of the combination do not

render the terms of the second order of variable or conflict-

ing sign.

Suppose, in the present case, we make c zero. Then
we obtain, as the roots of (2), / = o, / — i, / = — i. But
the last two values of / renderf in (3) positive, while the

first renders it negative, and cannot, therefore, enter any solu-

tion with the other two, as the sign of the terms of the second

order would then be in our power. It is evident that a vessel

could pass from one point to any other by a suitable combina-

tion of tacks, making with the axis of x angles whose tangents
are either -|- i or — i

;
and as the integral has the same value,

whatever be the number of these tacks, because /is the same
whether y be + i or — i, we obtain in all cases one path

along which the time of passage will be a minimum.
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To determine, when two minima exist, Avhether the quicker

passage can be made by following the path composed of tacks

or a continuous line, is not a problem of variations, but of

algebra only. For, resuming the value of/, we may write

24 4
'

4

Also, when y' is + i o^* — i> /= <^' • Therefore, since
4

(y^
—

i)' cannot become negative, wx see that the solution

composed of tacks will give the least possible value of t. We
have, of course, assumed that it is not necessary to tack back-

ward
;
that is, that x may always increase algebraically.

228. We naturally inquire whence arises the discontinuity
in this class of problems, and why it presents itself in certain

forms of /, and not in others. Now the only condition im-

posed besides the fundamental one, that the given line shall

possess a certain maximum or minimum property, is that it

shall also join two fixed points, and if the required maximum
or minimum property be not altogether impossible, the dis-

continuity must result from imposing the second condition.

That it does in general thus arise will appear from the fol-

lowing example, in which this condition is removed.

Problem XXXVIII.

229. A vessel startingfrom a fixedpoint is required to sail a

certain number of miles, her speed being ahvays dependent solely

upon the direction of her course and certain constant quantities.

It is required to determine along what path the given distance

may be accomplished in a minimum time.

Regarding the ocean as a plane, assume the meridian

through the starting-point as the axis of
-3{;i,.

and employ

y^'' ^ — *
J-. >.->
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t and V as before. Then it is plain that we shall have, as for-

4/1 _u/-^
merly, v — F{y') = F, and dt = ^^^—

- dx = /{/) dx = fdx.r

Hence we are to minimize the expression / fdx, while
nx-i,

/ \/i-\-y'''dx is to remain constant. Therefore the prob-fJXq

lem is now one of relative maxima and minima, and we have

u= fC{f+ ^ ^^+yi ^-- =£? vdx, (I)

where it must be observed that V is also a function of y' and

constants only. In the- present case, moreover, we do not

suppose the second extremity of the required curve to be in

any manner restricted, so that x^ and y^ are both variable.

Therefore, to the first order, we have

SU^ (/+ a ^7+ /') dx, +
j/'
+ -^7=^ I

Sy,

Whence

where

rij/'+vf$7-i^-""-
«

-^

df

Now, for the same reason as given in the preceding prob-

lem, c cannot, even should discontinuity occur, and the inte-

gral be separated into parts, have two values, c^ and ^3, within

the range of integration ; and since we know from (3) that c, or

the coefficient of Sy^, must vanish, (3) becomes
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Moreover, in this case, no relation exists between dx^ and

6>^, because the extremity of the required curve is not con-

fined to any other curve, but is wholly unrestricted. There-

fore (i) must also give

(/+«vr+7^X = o. (5)

From (4) and (5) we have

/ \ and ,^-r^;+y'. (6)

vi+yM, y

From (4) and (6) we obtain

Now since F is a function of y only, we know that the

required path must be some right line, or combination of

right Imes, so that y is the tangent of the inclination of this

line, or else of the last tack, to the axis of x. But it is evi-

dent that if the solution can consist of tacks, involving two or

more values ofy ,
the arrangement of these tacks will be arbi-

trary, since the integral taken through an}' given portion of

X will be the same for any one of the tacks—that is, for any
one of the admissible values of y—and therefore // can have

any one of these values, but no others. Hence, as the pos-
sible values of y and 7/ are the same, we may remove the

suffix from (7) and write, as the general equation of condition,

/'-T^
= o. (8)

From (8) we can obtain y in terms of constants only, and

it may have one or more real values, the imaginary roots being
of course rejected. In the former case there can be but one

solution
;
but wheny has more than one real value, a discon-
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tinuous solution by a combination of these values would seem

possible. It must, however, be observed that, whether the

solution be continuous or not, a must retain the same value

throughout U.

Now take any two real values of y' found from (8), and

make // equal to the first, and 7/, which may be regarded as

measuring the slope of some other tack, equal to the second.

Then from (6), and also observing that we may interchange
the slopes of the tacks at pleasure, we have

f
Vi+y

(9)

and as every member in (9) equals — a, we may write

/
Vi +/'A-r\

_^ /
^i +/"

y'
(10)

But it will be in general impossible to satisfy (10) by employ-

ing any two values of y' found from (8), so that a discontinu-

ous solution will not frequently occur. Still such solutions are

possible, as we shall prese^ntly show
;
and even when no dis-

continuity is admissible, it is conceivable that we may have a

choice of two continuous solutions, provided j// and // can

severally satisfy the equations

/

/
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because a in the two solutions need not be identical, but must

not change value in the same solution.

230. As a particular example of the preceding problem,
let us assume the velocity to be that employed in case 2nd,

Prob. XXXVII., so that /and /' will have the values there

given. Then by equations (i) and (2), Art. 226, equation (8)

of the preceding article will become

O. (I)
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2
"^

4

vi +y' Vi +y'

fWi+y = {y'-i)Vi+y^

is)

But it at once appears that none of the members of (9) will be
in any way affected by the successive substitution of two
values of y numerically equal but with contrary sign. More-

over, in this case, the equation

/ _rvi+y
Vi +y' y

reduces to equation (2) ;
so that it must be satisfied by either

value ofy just found, and will also, from what has been shown,
be satisfied by substituting the positive value in one member
and the equal negative value in the other.

Hence it appears that equation (10) of the preceding article

will be satisfied by putting for j// and j/ the two values ofy
given in (4), and by no others. Therefore the solutiony = o

can only hold when zero is a root of (2), which can only be

made true by making d^ = —
i, and in this case there will be

no other root, and so no discontinuity. But if d^ become

greater than —
i, we shall have an equal positive and nega-

tive value of y, which may be combined in the same solution,

thus giving discontinuity.

231. Let us now consider the terms of the second order.

These are

where
'''-i{T)f^'+'''''^'+ir'£^'y''^' (6)

2 4
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Now, because y" is zero, all the successive differential co-

efficients of V^ must vanish, and also we have

=W-'^^\''-
and, as will be seen from equation (4), Art. 229, the coeffi-

cient of (^j// likewise vanishes, so that we have left in SU only
the terms under the integral sign, and have merely to deter-

mine the sign of -—^. Now we have

^= /" + ^ /" = 3/' - I,

/Vi+ya ^
y

= -
(/' - I) Vi +/'.

Whence

^^^_3y._i_y^-i_3/*+y
dy"

^-^
I +/' I +/'

*

Therefore it appears that we have a minimum whether y' be

positive or negative.

When, however, y' is zero, we see from the last equation
d'^V

that -r-TT is also zero, so that we might infer that this value of
dy

y gives neither a maximum nor a minimum. But this infer-

ence would not in the present case be correct, because we
shall find that the terms of the third order reduce also to zero,

while those of the fourth order will become positive. It may
be also observed, although not affecting the problem, that
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when y is zero, dx^ can have but one sign, the negative, if x^

be positive.

232. It will be seen that while the removal of all condi-

tions regarding the upper limit does not here destroy the ad-

missibility of a discontinuous solution, it nevertheless abol-

ishes its necessity. For as the value of /, and also that of x^,

will be the same whether we employ the positive or the nega-
tive value of /', or some combination of the two, the time

fdx will be also unaltered
;
and as we are not now obliged

to tack in order to go from one fixed point to another, and no

time is gained by tacking, the discontinuity is merely admis-

sible. The discontinuity in this case appears to arise from the

fact that the problem is so constructed that the fundamental

equationf -\ „ -^ = c may have two roots, both of which
1/1 +y"

give the same value of /, and satisfy all the conditions of the

question.

233. Suppose we modify the preceding example byre-

quiring that, instead of sailing a certain number of miles, the

vessel shall be required to reach a certain degree of latitude

in a minimum time. Then we are to minimize absolutely the

expression U — J fdx, where / has the same value as be-

fore, the limit x^ now being fixed, but jj being subject to varia^

tion. Then we havej as before,f = c, and c cannot have two
values. But because ^y^ is not zero,// otf must vanish, so

that we have/^ = y' (y^ — i)
= o

;
the roots of which arey= o,

y'— i,y'— — I. Now asji' is not fixed, we can employ any
one of the values of y' alone throughout U. The first will

render U a maximum, as we have already seen, while the

other two will give ^the same value whether employed sep-

arately or in combination, which value is a minimum, as has

been shown, and is also the least value of U,
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234. We may now consider briefly the inquiry with

which we opened Art. 228.

Two things affect the problem : first, the particular form of

/or V\ and second, the conditions which ai'e to hold at the

limits. With regard to the first we may observe that there

can be no discontinuity unless /or F be of such a form that

the fundamental equation/^ — c can furnish more than one real

value of y' . Thus, in Prob. I., the fundamental equation is

— -^ = c, which, because s/ \ -^y is supposed to remain

positive, can be satisfied by one value of y' only, so that in this

case no discontinuity is possible.

Second, when the fundamental equation gives several real

values of y, and a combination of them satisfies all the other

conditions of the question, the necessity for the employment
of this combination, or discontinuous solution, generally arises

from the fact that the points to be joined are fixed. More-

over, as we in whole or in part remove this restriction from
one of the limits, we decrease the probability that these val-

ues can be combined at all
;
that is, that discontinuity will be

possible ;
and even when it still occurs, it appears generally

rather admissible than necessary.

235. When /is a function oi y" or y^' only, admissible, but

not necessary discontinuity is still more likely to occur. Let

us consider, as an illustration, a particular case of Prob. IV.

Problem XXXIX.

Let it be required to maximize or minimize the expression

supposing the limiting values of x andy only to be fixed.
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Proceeding as usual, we obtain

f' = §r
=
2[aY-^^=c.^+ c^. (2)

But <5>/ and 6y^ are not zero, so that their coefficients // and

// must severally vanish
;
and assuming the origin at one of

the fixed points, we readily see that c^ and c^ also vanish, so

that (2) gives

«>"-— =
(3)

and

y"=^±-^=±B, (4)

Therefore, by integration, we obtain

^=±^ + C,x^C„ (5)

in which, because the origin is at one of the fixed points, C^

must vanish, and then C, must be determined by making the

parabola pass through the second fixed point, whose co-ordi-

nates must satisfy the equation

The term of the second order is

which is positive for either value of y", thus giving a mini-

mum.
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We have here also the least value of U. For we may
write

«>"" +yi= [^y
-
^7)

+ ^'^'1'% (7)

h h

which, by makinpf/^ either + - or
>
reduces to 2a^U'.

•^ a a

236. Here no discontinuous solution can be necessary,
because we can always join the two fixed points by a para-

bolic arc, in which /' shall be -I— or
;
and also, we have

a a

then the least value of U. Still, a discontinuous solution is

always admissible. For Ave can also always pass from the first

to the second fixed point by some combination of parabolic

arcs, each of which will satisfy (5), but will differ in the values

of C^ and C^.

Now it is evident that all these arcs, having y" either

-)-
- or

,
will satisfy the equation M =0, and it remains

a a

only to show that they will also make the terms in ^6^ which
remain without the integral sign vanish.

Consider two of these arcs meeting at the point x^^ y^. The
terms arising for this point are

But since the equationy = ± - holds for both arcs,f and -^
a dx

must vanish for both, thus rendering the expression just given
likewise zero

;
and similarly for any number of arcs.

Here the discontinuous solution consists of parabolic arcs

which may meet at finite angles, and the value of U, and also

that of the terms of the second order, is the same for either

solution.
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Problem XL.

237. It is required to determine the solution of Prob. XV,
when the length of the given line exceeds that of the semi-circum-

ference described upon the line Joiniftg the two fixed points as a

diameter.

We can of course always, by taking the radius sufficiently

great, join two points by a circular arc, whatever the length
of that arc may be required to be. But we cannot here ex-

tend the arc beyond i8o°; because then there would be be-,

yond Jo and y^ both a convex and a concave portion of the

arc
;
and besides being compelled to count a portion of the

area twice, these portions would, as we have seen in Art. 95,

give opposite signs to the terms of the second order. Indeed,
whatever may be the solution, we would most naturally un-

derstand the problem to imply that we are not to go beyond
the production of the ordinates y^ and j/, ;

that is, beyond the

lines whose equations are x — x^ and x = x^, which may there-

fore be considered as boundaries which we must not trans-

gress.

We would therefore feel certain that the solution, at least

so far as discoverable by the calculus of variations, can consist

only of what will satisfy the equation M —o, with perhaps
some portion of these boundaries, unless indeed some other

boundary can be discovered.

Let us now see what can be obtained in the usual way.
We have

u=£>+ '^ ^' +^1 ''' =£? f^-^-^'

M=,-4^-JL^_, and X ^=_- = ..

(I)

Now the last equation will be satisfied by y'= co
,
because we

shall then obtain x — a = c, which is therefore a particular or
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singular solution, being the equation of a right line perpen-
dicular to X. But any such line will reduce M to unity, so

that we can only employ one or both bo'undaries joined to a

circular arc, because that arc gives the only general solution

of the equation M ^= o.

Moreover, we cannot assert that c must retain in this case

the same value throughout [/, For the terms without the

integral sign at either point of junction of the arc and line are

of the general form

«i(.7r#7)r(-.^-^),H-
«

which in order to vanish will require that y shall at these

points mean the same thing for the arc and the line
; that is,

that they shall be tangent. Hence we are not confined to one

boundary, but are at liberty to employ both.

238. As the infinite values ofy will render our investiga-
tions untrustworthy, we must, in order to determine whether
the proposed combination be the real solution, transform to

polar co-ordinates. Take the pole at any point on the axis of

X, between x^ and x^, regarding that axis as the initial line, and

denoting by v the angle which any radius vector r makes with

this initial. Then it is plain that W must have the general form

given in equation (3), Prob. XX 1 1 1., except that the limits

will not be the same. For let v^ and z\ be the respective

ciUgles which the radii r„ and r^ drawn to the two fixed points
make with the initial. Then we need only consider the integ-
ral from T'o to -c\, because although all the area in question is

not comprised within the limits, still the two remaining tri-

angles v/hich are included between the initial and the respec-
tive radii and ordinates undergo no variations.

We are, then, to maximize the expression

^ =X"' { 7 + '^ ^'-^+ ''"
1
-^^ =X" ^'^^^

'

(3)
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Then, since Sr^ and dr^ vanish, if we suppose U divided as our

solution requires, we shall have

-\-fJ"M6r
dv J^fJ'MSr dv ^-£'M dr dv, (4)

where

i\/r \

^^ d ar .

^

S/r'^+ r" dv i/r'+ r''
^^^

Then to make the terms without the integral sign vanish, we
must have r/— r/ and r/= r/, which agrees with the result

from equation (2). We also know that the circular arc will,

so far as it extends, reduce M to zero, so that the second in-

tegral in (4) will vanish, leaving only the rectilinear portions
to be examined.

Now along either of these lines r cos v is constant, so that

by differentiation we find

, r sin 7^

r = = r tan v,
cosz/

|/^2 _|_ ^/2
_ ^ |/j _j_ ^^j^a V = r sec V

zo^v

r . a r
cos V, = sm ^,

—
,

= cos V.

Therefore along either of the rectihnear portions M reduces

to r. But for these boundaries dr is always negative, so that

dC/ becomes a negative quantity of the first order.
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Hence, if we vary the whole line, we are sure of a maxi-

mum without examining the terms of the second order
; but

if we vary the arc only, such examination would be necessary.
In this case we can again employ plane co-ordinates, and we
have already shown that (^t/ would then become a small nega-
tive quantity of the second order.

239. If jKi and jKo be not equal, the arc in a continuous so-

lution cannot equal the semi-circumference having as its

diameter the line joining the fixed points. Let A and B be the

fixed points, and let y^, the ordinate of A, be less than jj, the

ordinate of B. Let A Che drawn parallel to x, C being upon
the ordinate jj, and bisect AB at D by the perpendicular DE,
E being on A C.

Then the limit of the continuous solution will be reached

when the arc becomes tangent to the ordinate y^ ; that is, when
its tangent at A is perpendicular to AC. Then it is evident

that the centre of the circle will be at E. Now s being the

length of the arc, and R its radius, we shall have the following

equations :

AD=\^{x,-x:f-\-^y,-y:)\

R = AD sec EAD =:ABVi+ tan= EAD,

t^nEAD=^^i^^^-^,
•^1
—

^0

Then s can be determined by equation (10), Art. 91. De-

note this particular value of s by /. Then if /, the length of

the given line, be somewhat greater than /, the line must be

first extended along the ordinate y^, produced a certain dis-

tance l\ until a point is reached at which the same construc-

tion can be made as at ^. Then all the equations just given
will be rendered true by merely substituting for y^, y^ -{- 1', so
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that the new values of R and s may be found in terms of

x^, jKo, -^1, y^ and I'
,
and then we have the additional equation

l—l'^s, so that, / being given, V can be also determined.

This construction will hold until

^=/i->'o+-(-^i-^o),

when the arc will become a semi-circumference. If then / be

still further increased, we must retain the same semi-circum-

ference, but also produce y^ as well as y^ a certain distance I' ,

Then we shall have

Hence, as / is supposed to be given, I' will be determined,
and this construction will hold when / is indefinitely ex-

tended.

We must, in closing, call attention to the fact that this

problem, when discussed by plane co-ordinates as at the be-

ginning, affords another instance to show that necessary dis-

continuous solutions are generally suggested by the funda-

mental equation, even when they do not satisfy at all the

equation M —o.

Problem XLI.

24-0. It is required to determine the discontinuous solution i?t

Prob. XIX.

It will be remembered that when x\ is zero, x^ becomes a

definite function of the given volume, so that if we require
the second point on the axis of x to be fixed—that is, x^ to

have a given value—then, unless that value happen to satisfy

the equation x^
— V -—-, where tj is the volume, we must

resort to some discontinuous solution, if any solution be pos-
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sible. (See equation (8), Prob. XIX., observing that c there

was shown to equal x^^
Now as ^^in this problem does not admit of the usual

transformation, because it contains no variation but that of j/,

the fundamental equation is found by equating to zero the co-

efficient of 6y dx in equation (2) of that problem, which gives
either J/

= o, or else equation (3).

This suggests that if the value of x^ be too great
—that is,

greater than j/
-— — the solution will consist of a curve satisfy-

ing equation (4), and extending from the origin to some point

x^ on the axis of ;r, x^ being less than ,r,, and then of the axis

itself from x^ to x^ ;
and that if x^ be too small, the solution

may consist of the same solid extended to x„ beyond x^, and

then of the axis from x^ to x^, the solutions thus being similar

to those in the case of the sphere.
Now the terms of the second order, as we see from equa-

tion (2), are

dU= r^
\ a-\-x-^^^-^'- 1 dfdx.

But if we put 7 = 0, and for a its value -^-» we shall obtain

6U^.S \-^-\-—}i^fdx,
{ 2C^ 2X^ )

where the integral extends over the rectilinear portion only;
while if we vary the generating curve, (5^6^ will take the form

given in equation (11), where the integral will extend from

x^ to x^, and will be negative whether x„ be less or greater than

x^. Hence, observing that c — x^, the entire variation may be

written
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Now in order that U may be a maximum, the second integral
in (i) must also become negative, otherwise the sign of dlJ

would become ambiguous. But any element of this integral
will evidently become negative or positive according as x^ is

less or greater than x. Now when the solid does not extend

to the second fixed point, x for the rectilinear part is greater
than x^, and the same will be true when the solid extends be-

yond the second fixed point, provided we agree, as explained
in Art. 195, to regard x for the rectilinear part as still increas-

ing from x^ to x^ ;
so that under this supposition we have

always a maximum.

241. But the solution in the case in which the solid ex-

tends beyond the second fixed point may not, perhaps, be

deemed altogether satisfactory. For in the volume which is

generated by the derived curve, we are obliged, as before, in

the case of the sphere, to reckon twice that generated by ^y

along the rectilinear part, and also to regard its attractive

force, when counted the second time, as what it would be if

each element were placed as far beyond x^ as it now falls short

of that point.

We do not, therefore, in reality, compare the attraction ex-

erted by the primitive solid with that which would really be

exerted by the derived solid, but merely with what the attrac-

tion of that solid would be if the attraction of any particle
could vary inversely as the square of the estimated value of

X, instead of its actual value.

Thus we have here merely a sort of theoretical or imagi-

nary solution, not properly capable of geometrical representa-

tion, and presenting itself possibly somewhat as do imaginary
roots in the theor}^ of ordinary equations. But the condition

that the solid is to meet the axis of ;ir at a second fixed point

may, as Prof. Todhunter has suggested, be more naturally
understood to mean that the solid is not to stretch beyond the

line whose equation is ^ = x^. Then c in (4) would no longer
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be equal tO-Tj, but could be determined from equation (7) by

making the limits o and x^, since x^ and v are both given ; and

then all the conditions of the question could be fulfilled.

But should neither of these solutions prove satisfactory,

we are still at liberty to suppose that there is no solution,

since it is evidently possible to assume such conditions in any

problem as will render any solution either continuous or dis-

continuous impossible ; as, for example, if in Prob. XV. we
should assume the given line to be shorter than the right line

joining the two fixed points.

Problem XLII.

242, It is required to discover the nature of the discontinuous

solution in Prob. XXI

Here, as will appear from reference to the problem, the

continuous solution consists of an oblate spheroid whose major
axis is to the minor as ^2 is to i

;
that is, whose eccentricity

is —=r, ^^ the square of the semi-minor axis, being equal to x^.
V2

Hence, if the given volume be greater or less than —
,
the

solution, if any exist, must be discontinuous.

But the fundamental equation in this case, as will be seen

from equation (4), is

y {/ -f 2.r' — 2d')
= o,

which gives either
jj/
= o or equation (5), which is the equa-

tion of the generating ellipse. Let A and B be the two fixed
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points on the axis of ;r, and C the origin, which, it will be

remembered, was required to be midway between A and B.

Then it is suggested that the discontinuous solution might be

that represented in the figure, where the generating ellipse is

DE or FG, according as the given volume is less or greater

than -.

3

Here, then, U for either case may be divided into three in-

tegrals, extending respectively from x^ to x^, from x^ to x^,

and from x^ to x^ ; x^ being in the first case the abscissa of D,
and in the second that of i% and x^ being that of E or G. We
must also recollect that in the second case x^ and x^ are thus

estimated :

X, = - (CF+ FA) and x, = CG+ GB.

Now we have seen (Art: 120) that the terms of the second

order for the ellipse reduce to / ysydx, and to obtain the

variation of the rectilinear portions we have merely to make

f zero in the first equation of that article, so that we have

d[/ =fj\^"
-

a')6/dx + fJ'/S/dx+ fj\x'
-

a'')6/dx.

To render the first and third integrals positive, we must have

x"" > d^; and since d" = x^ = x^, if we estimate x for the recti-

linear part as already explained, this condition will be fulfilled

in either case, and ^becomes a minimum.
But since the solids generated by both the primitive and

the derived curve are to be revolved about the axis of j/, it

must appear that when the sohd extends beyond A and B the

solution, like that of the preceding problem, is merely theo-

retical or imaginary. These problems also resemble each

other, and differ from all others which we have considered,

in that, as t/ contains x and 7 only, there are no terms m 6U
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without the integral sign ;
and hence the equation L =

gives, without integration, the equation of the required

curve, and there are no terms to consider at the limits.

Problem XLIIL

243. // is required to determifte what discontinuous solutions

can present themselves in the discussion of Prob. XX.

Here the continuous solution is an hypocycloid, in which
the radius of the rolling circle is one third that of the fixed

circle. But, by the closing remarks of Art. 1 16, it appears that

this solution cannot hold when the given volume becomes less

than ^, where b is the radius of the given base
;
so that if

the given volume be less than this quantity, the solution, if

there be any, must be discontinuous.

Let AD be the axis of x, and DB the radius of the gen-

erating base. Then, since the volume was to be upon the

given base, we would naturally infer that when the volume
becomes too small, the generating curve would consist of an

arc AC oi an hypocycloid, and a portion CB of the radius of

the base. In fact, we may understand the conditions of the

problem to imply that the solid is always to be upon a portion
of the base.

244. Before considering whether this solution is also sug-

gested by the calculus of variations, we will show that it is in

some cases the solution required.
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For the solid generated by ^(7 the resistance will evidently

be
27tj^ "Y /2 ^^^ ^^<^ fo^" the ring generated by CB it will

be
7t{b'^

~
yi)' Hence we may minimize the expression

where we are to regard jj, the ordinate of C, as variable, but

the other terms at the limits as fixed. Now taking the varia-

tion of U under this supposition, transforming it as usual, and

making M vanish, we shall obtain, as in Prob. XX., equation

(4), which will be of course the differential equation of the

hypocycloidal arc AC. But we have, after malting J/ vanish,

and to satisfy this equation, we must, since y^ is not zero, have

+
(I -^ry'J

°'

which gives y = ± i' Thus it appears that the generating
curve must meet the ordinate of B at an angle of 45"".

246. To determine the sign of the terms of the second

order, we must observe that the terms under the integral sign
in the value of ^ given in (i) equal 2^ in Prob. XX. Hence
we shall obtain from the variation of these terms twice the

second member of equation (19), Art. 117. But we shall also

obtain from this integral a term without the sign of integra-
tion. For (19) was obtained under the supposition that 6j/,

and (^Ko vanish. When, however, this is not the case, we must,

as we see from equation (6), Prob. VHI., add to the second

member of (19) the terms

J (//<5j," -•/.%."). (2)
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which will give in this case the additional term

HI +/ ) '
1

and as this is cancelled by the term of the second order arising
from the variation of — y^ in U, SU becomes merely twice

the second member of (19), which is positive.

246. Thus we have a minimum if c have any real value.

Now because j/ = ± i, taking the positive sign, we have, from

equation (4), Prob. XX., which, it will be remembered, is the

c
fundamental equation in this case also, jj/j

— —
;
and it is also

4
shown by operations of the differential and integral calculus

only, that the given volume, v', will in this case be

v' = -^
(3)

1920
^^''

Hence, when v^ is given, c and j/j are at once determined.

Now v' can be given as small as we please, but it cannot

be as great as we please. For j\ must not exceed d
;
and as

c = 4jj, v^ evidently increases as we increase y^, and must have

its greatest value when ji = b—that is, when c :=4d—and then

(3) gives

.-135^.
(4)

30
^^^

We see, then, that if the given volume be less than -, we

must always employ the discontinuous solution
;

if it be

s^reater than ——
,
we must alwavs employ the continuous

30
. ^ J

solution
;
but if it He between these values, then we shall have

two mmima, and must determine which will give the smaller
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resistance. This determination must, however, as in former

cases, be effected by the ordinary calculus alone, using, of

course, any equation which has been thus far obtained.

It will be sufficient here to give the necessary formulse

and results. Let 2\ denote the angle whose tangent is jk/.

Then, R being the resistance. Prof. Todhunter shows, by
methods of the ordinary calculus, that for the continuous

solution

„ __ nb^ (i sin^ v.

^-^^i. (5)cos v^ \ 4

and that for the discontinuous solution

where, since v' is supposed to be a given quantity, v^ can be

determined from equation (12), Art. 116, and c from equation

(3) of this article. Now if we take the extreme values of v',

for which two solutions are possible,

^'
— ± and v' = -^

, (7)
5 30

^^^

we shall find that the two solutions coincide for the first, R

being in either case ^-—
-, and for the second value of v' we

20

shall find that R is less for the discontinuous than for the con-

tinuous solution. For we have in the first case

I _ ^—£_ K — Ttb^ X. 440 1 2, nearly ;

and in the second

_ 9^^'

20
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It is also shown, by determining the sign of -—
,
that both for

dv

the continuous and discontinuous solution R decreases as v'

increases. Hence, from what has been already shown, it will

appear that, when there are two solutions, the discontinuous is

that which will always give the smaller resistance.

247. It will be remembered that in Prob. XX. we con-

sidered only the case in which v is supposed to be zero when

y is zero. But if we supposed that when y is zero v is —
,
and

measure the arc s from that point, then we shall have, from

equation (lo) of that problem, ^ = cos yu.

Here, on account of the infinite value of y\ our investiga-

tion of the terms of the second order will not be satisfactory,

and we will therefore adopt y as the independent variable.

Then C^ becomes

Hence, to the second order,

Therefore, by making the terms of the first order vanish,

2yx'
2ay'^

— -—
Y^
—— = a constant, which must be o

;

(I -j- ;r
)

and this must, of course, lead to the hypocycloid, as before.

Then, as the terms of the first order vanish, we shall have

'^^=r>(S^<^-'^^-^'
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which is negative so long as x'"^ does not exceed -
;
that is, so

7t

long as ^1 is not less than - Thus in this case the resistance

becomes a maximum, provided we can determine real values

for c.

Now, as before, it is shown that in this case

cos^ v^ 1 3 cos^ 2^ 1 5 cos* v^ 7 cos'^ ^1 _|_
i

~3 10 ' 8 6 ^3 , .

V = 7tc COS V,
-^

I ,

-^
. ( 10)

Also, because equation (5), Prob. XX., holds, we shall find

that here, as in equation (13) of the same problem,

^ = sin' z/j cos 2/j, (11)

and from these two equations c must be determined. It is

evident that v' can be made as small as we please ;
but it can-

not be taken as great as we please, because it decreases with

v^ ;
and in order to have a maximum, v^ must not be less than

(12)

which is therefore the greatest admissible value of v' .

248. We are naturally led to inquire whether there will

be any discontinuous solution when v' exceeds the value just

given.
Since the solid is to be bounded by the given base, the

only suggestion which presents itself is that y^ may now be

greater than b. Then, when y is the independent variable, U
will have the form given in (8). But now, as 7, is variable,

we must, when we vary U, increase also the limit y^ by dy^ ;

7t

3*
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that is, we must add to the terms of the first order in (9) the

term

V, dy, or
| YjIV'

+ ^^^'^'
\

^^''

Now the coefficient of Sx^ will necessarily vanish, but we can-

not also make V^ vanish. Hence SU \.o the first order will

not vanish ;
and as dy^ may have either sign, U will be neither

a maximum nor a minimum.

249. A somewhat curious point is here noticed by Prof.

Todhunter, which it may be useful to consider.

Let A be the distance of the base from the origin. Then
we may evidently consider the solid as composed of cylindri-
cal shells whose radius is y, thickness dy^ and length A — x.

Then, instead of

£yfdx or
fjy/^'dy,

the volume may be written / ^27ry{A
—

x)dy. Therefore with

this value of v' we are to maximize or minimize the expres-
sion

+J2'\-"+'^jj^f\""l>- (.3)

Hence, by integration, we obtain

— a/-\- ^ — a constant, which must be o.
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This equation is in reality the same as that which we ob-

tained before, and leads, therefore, to the hypocycloid. Thus
the integral in (13) will vanish, and so also will the terms at

the lower limit, because there y is zero
;
but the terms at the

upper limit will not vanish, so that we have, by the last equa-

tion.

Now since the base is a boundary which we may not pass,

dx^ is essentially negative, and thus ^U becomes a positive

quantity of the first order, indicating that we have a condi-

tioned minimum, which result would seem to show that we
can never have a solid of maximum resistance, thus conflict-

ing with what has been before proved.

250. To explain this difficulty, let AB be the primitive

curve, and suppose we wished to pass to a derived boundary
EDB, where DB is parallel to x, and infinitesimal.

Then we could not derive this boundary from AB by inhni-

tesimal changes in y and y, although we could by such

changes in x and x'.

This assertion, which Prof. Todhunter takes no pains to

establish, may at first appear incorrect, because we seem to

have given x^ a finite variation in order to obtain DB, which

would be inadmissible. But the position appears to be sound,
since we should regard x^\ after being varied, not as the tan-

gent of the inclination of DB to y, but as that of the inclina-

tion to y of the tangent to the derived curve at D, supposing
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the curve ED produced beyond D. Then Sx^ need not be

finite.

Now since y^ is fixed, we shall (unless in the last article we
make dx^ zero, in which case all the terms of the first order

will vanish, and there will be no difficulty) be obliged to pass
to a derived curve terminated by DB, DB being numerically

equal to Sx^. Still, so long as we adopt for the volume, as we

did in (8), the expression nj y'x'dy, we cannot pass to such

a boundary as we have been considering ;
because although

the expression just given will represent the volume generated

by the primitive, still, when we change x' into x' -\- dx\ and

write v' =
TtJ y{x' -\- dx')dy, v' can only represent the vol-

ume generated by ED, neglecting entirely that generated

hy DB.
Hence we conclude that the form of v' adopted in (8) is

not general enough to permit of a full discussion, as it will

not allow every change in the form of the solid which the

calculus of variations would in this case sanction. We see,

also, that we can have a solid of maximum resistance only
under the condition that jKi, the radius of the generating base,

shall be invariable, and that the curved part of the solid shall

always extend to the circumference of the base.

251. We have in this discussion a remarkable confirmation

of the principle often before stated—that when by variations

we have obtained conditions which render any definite inte-

gral U a maximum or a minimum, we are not necessarily war-

ranted in asserting more than that C/ is a maximum or a mini-

mum with respect to admissible variations. For the sohd of

minimum resistance which we obtained in Prob. XX. is not

the solid of least resistance, since by taking a zigzag boundary
it could be still further diminished, although we could not

pass to such a boundary by the calculus of v? nations. More-

over, our solid of maximum resistance is such so long only as
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we do not make suck a change in the form of the sohd as in

Art. 240. But a solid of still greater resistance would evi-

dently be obtained by passing to a boundary in which y' is

alternately zero and infinity, although such a change of form
cannot be effected by the calculus of variations.

252. It will be remembered that in Art. 243 we were led

to the discontinuous solution, which we subsequently verified,

by the consideration that the given base constituted a bound-

ary, and that therefore it would probably form some portion
of the solution.

Now we have found hitherto the boundaries to be also in

some manner suggested by the fundamental equation which

IS usually the first integral of the equation M— o, even when
these boundaries do not in reality cause M to vanish at all.

In the present case, however, the discontinuous solution does

not appear to be very clearly suggested by the calculus of

variations alone, unless, indeed, U can be put under some
form different from those which we have yet examined. For,

adopting in succession x and y as the independent variable,

the first integral of the equation J/ = o will be in each case

the most general form of. the fundamental equation, and we
shall have

yy
^y — 7 I /2^2

= a constant
(i -\-y'J

and

y^'
^^ ~

{ i-\-x''f
"^ ^ constant.

which constant must, in either case, be zero, because the curve

is to meet the axis of x. Therefore, rejecting the solution

J/
—

o, we have

= /' ^ //' H - ""' - ^'^'

and these equations lead to the same solution.
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Nowy = CO or x' = o are not solutions of these equations,

unless, indeed, we could suppose <; == co and C — co . But

these constants will not be infinite for the curve
;
and since

they are in each case the reciprocal of a, if we remember that

even in a discontinuous solution the constant introduced by
Euler's method cannot, like a constant of integration, have

two values, it will appear that c and C cannot become infinite

at all.

253. There would seem to be nothing surprising in the

fact that the fundamental equation does not always suggest a

boundary which does not cause M to vanish at all, and indeed

it would appear more remarkable that such boundaries are so

frequently suggested. Cases, however, like the present ap-

pear to be rare, and we have now had abundant proof that

the calculus of variations does usually suggest solutions when

they are possible, and even when such suggestions would not

naturally be expected.

Moreover, in discontinuous solutions it very often happens
that a trial solution is easily reached without the aid of varia-

tions, or at least without examining the form of M; and then

the calculus of variations affords us the means of verifying or

falsifying this proposed solution, and that, too, very frequently
without an appeal to the terms of the second order.

254-. The subject of the present section has been most

elaborately treated in the Adams Essay, or Researches in the

Calculus of Variations, published by Prof. Todhunter in 1871,

and to his labors its present degree of perfection is chiefiy

due. In this section, which is little more than a condensed

view of that treatise, we have endeavored to present all the

leadmg points of that work, and particularly those points

which were new to our science. All the examples, there-

fore, of this section have, with slight modifications, been taken

from this essay, although we have in no respect followed its
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order. We therefore earnestly recommend the work to all

who wish to become fully acquainted with this subject.

We have, with the exception of Prob. XXXIII.
,
consid-

ered those cases only in which the discontinuity ma}^ be sup-

posed to arise from conditions unconsciously imposed, or at

least imposed without seeking to produce it
;
because it is only

when it thus presents itself that its origin can be a source of

difficulty. It must, however, be evident that even when no

discontinuity would naturally occur in a problem, we can

easily impose such restrictions as will render a discontinuous

solution necessary, and the work to which we have referred

is occupied largel}^ with such examples, some of which exhibit

much ingenuity. But as these examples, while affording ex-

cellent practice in this department of analysis, present nothing
which has not been already considered, it will be sufficient in

closing to subjoin one, which is all that our space will permit.

Problem XLIV.

255. It is required to find the path of quickest descent of a

particle from a fixed point A to a second fixedpoint B^ under the

condition that the path is not to pass without a given circular arc

AB, which is not to exceed a quadrant ; the particle startingfrom
a state of rest at A

,
and B beijtg the lowest point of the arc.

Assume the horizontal as the axis of x. Then, as in Case

2, Prob. II., we shall have

^^0 Af7. t/.Tn
'

6U=:P6y-\-fMdydx,

(I)
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where the limits and suffixes are for the present omitted, and

p^dV
dy ^yix^y"^

(2)

ax 2j'i ax

where iV^== -— . Now wherever the sig^n of ^y is unrestricted,
ay

J/ must vanish, and this will lead to a cycloid having- its cusps
on the horizontal line through A, and its vertex downward.

But the cycloid alone can never be the solution, because

its tangent at A being perpendicular to x, it is initially with-

out the circle. Since, then, the circle is the only boundary
along which the sign of Sy can be fettered, the solution must

consist either of the given circular arc alone, or of, first, a

portion of that arc beginning at A, follow^ed by some combina-

tion of portions of that arc and cycloidal arcs given by the

equation J/ = o.

256. Let the initial and the first cycloidal arc meet at the

point x^, y^. Then there will evidently arise in dJJ., as given
in (i), the terms [P^

—
P^Sy^, 2iXidi this must either become

positive or vanish
;
that is, since Sy^ must be negative, P^ — P^

must be negative or vanish. But if it were negative, we
would, as appears from (2), have y^' >y^', which would re-

quire the cycloid at that point to pass without the circle,

which is inadmissible. Hence the coefficient of Sy^ being
zero, we have yj =^yjj and the circle and cycloid must be

tangent at the point x^, y^. In like manner they would evi-

dently be tangent if they could meet at any other point.

257. Let AC be the horizontal through A, O the centre
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of the given circular arc, and r its radius, R being the point

x^yv ^o that RTisdi normal to the cycloid.

Now take any point on ^(7 as the origin. Then the equa-
tion of the circular arc is

{x-cr+{y + bY = ,^, (3)

where b = OC, and c is the abscissa of O. Therefore, for the

circle, we find

f=--
X — c

y+b'

Hence, from (2), we have

N

Vi +/' =
y-^b

(4)

~ r X— c

2j/^{j/ -\- b) 27y\y -f- b) r Vy

dP_ -2y+y(x-c) _ -2y(y+ b)-{x-cy
dx
~

2ry^
~~

2ry^{y+ b)

Whence, putting in N the value of r' from (3), we have

y — b

(5)

J/:
2ry^

(6)

Now this value of AI must either vanish or become negative

in order that / MSydx may be positive along the circle, since
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M will vanish along the cycloid, and this requires merely that

y — b shall not become positive.

258, Let / and a denote respectively the angles OTC and

OAC. Then

RT=OR-OT=r--J- = r- ^^^^- ; (7)sm t sm ^
^' ^

and because i^T'is a normal to the cycloid, we have, D being
the diameter of the generating circle,

^ RT sin t — sin a , ^D = -^- = r ^^ .

(8)sm/ sm /
^ ^

If the cycloid can meet the circle again at some other

point S, we shall obtain a similar expression for D, only t

will then denote the angle which 6^5 would make with ^(7,

and these expressions would be equal. Hence, regarding /

as variable, and writing: v = ^- ,
we must be able to^ sm'/

effect that v shall twice have an assigned value, or else the

circle and the cycloid cannot meet more than once.

Now we find

dv 2 sin a — sin / , ^— = cos / r-3- . (10)

That is, to render v a maximum or a minimum we must have

either

2 sin <?:
— sin / = o or cos t = o. (i i)

Since sin t cannot exceed unity, if 2 sin a be greater than

unity, the first equation cannot be satisfied, and v continually

increases as / passes from a to -, and therefore cannot twice

have the same value
;
and the same would be true should 2 sin a

equal unity.
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Neither can we in this case make the cycloidal arc meet
the circle at R and also pass through B. For

CB= OB - OC=r- OC=:^r-b = r{i- sin a),

and D, as appears from (8), must be less than CB so long as /

is less than —
;
that is, sin / less than unity ;

and hence in this

case we must use the circle alone.

Now since y -^ b — ER = r sin t, and b = OC — r sin a, we
have y — b ^= r (sin t — 2 sin a), which is in this case negative,
thus rendering ^f/ positive for the whole circular arc. But
sin a = cos A OB, so that 2 sin <^ will be unity when AB is

an arc of 60°. We conclude, therefore, that unless the given
arc exceed 60°, it is itself the path required.

259, Let us next consider the case in which the given arc

AC exceeds 60°
;
that is, in which 2sin(^ is less than unity.

Here the first of eqs. (11) is satisfied when sin/'= 2 sin a;
and as v then becomes a maximum, it may evidently have the

same value twice. But now the value oiy — b just given would
become positive before we reach the point B, and so a part of

(^^ would become negative if we suppose the path to termi-

nate with a portion of the circular arc through B, which is

inadmissible.

We conclude then, in this case,, that the required path must
consist of the circular arc AR and the cycloidal arc RB tan-

gent to the circle internally at R. Then y — b will be nega-
tive for the whole circular arc AR. For as the cycloid is

tangent to the circle internally at R, its radius of curvature

must at that point be less than r; that is, since the radius

is twice the normal, 2RT<r, so that 0T> RT, Whence
OT sin TOE = EF = b is greater than RT sin RTF or
RF sin TOE

;
that is, ^ > y and y — b is negative.

260, We must now show that a cycloid can be drawn

tangent to the circle internally at R and passing through B.
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First, assume D — CB z= r — b, putting the vertex at B.

Then, since 2(r
—

b), the radius of curvature at B, is greater
than r, the cycloid will be tangent to the circle externally
at B. But by taking D sufficiently large, the cycloid still

passing through B, we can cause the cycloid to fall entirely

within the circle, and then by diminishing D, while retaining
^ as a cycloidal point, we must arrive at a value of D which

will cause the cycloid to become tangent to the circle before

cutting it, and this point of contact will be neither at A nor B.

For at A, y' for the cycloid is infinite, while for the circle it is

not ;
and at B^ y' for the circle is zero, while for the cycloid it

is not.

Now as the solution is real, it is unnecessary to discuss the

value of D or the position of the point of contact R, or of the

cusps on A C.

261. No natural discontinuity presents itself in the discus-

sion of Prob. II., since, if the two fixed points be not in the

vertical nor in the horizontal line, we can cause a cycloid to

pass through them both, and have its cusps on the horizontal

line through the upper point. Neither can there be admissi-

ble but unnecessary discontinuity of the kind discussed in

Prob. XXXIX. For if there could be two cycloidal arcs

meeting at any point, they must, as we have seen, both have

their cusps on the horizontal through the point from which

the particle starts, and must also, as appears from Art. 256,

be tangent. Moreover, from Art. 25, the fundamental equa-
tion is j(i +y^) = ^ = i^; and since y' has but one value at

the point of contact, D can have but one value there for the

two cycloids, and the cycloidal arcs must therefore be gen-
erated by the same circle rolling on the same horizontal.

Now as y' in any cycloid can have a given value but once,

these arcs have also their cusps in common
;
that is, there are

not two cycloidal arcs at all.
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Section X.

OTHER METHODS OF VARIATLONS.

262. Hitherto, whether employing plane or polar co-

ordinates, we have ascribed variations to the dependent vari-

able only and its differential coefficients, adding also, when a

change in the independent variable is necessary, an increment

to its limiting values only. This method, which has been

adopted by the two most elaborate English writers. Profs.

Jellett and Todhunter, as also by the chief German writer,

Strauch, is undoubtedly the best. But many writers vary
the independent variable also throughout the whole definite

integral ;
and as the reader will be likely to meet with this

method, the present work would be incomplete if it did not

explain this method sufficiently to enable him to follow the

solution of any problem in which it may be employed.

First Method.

263. Suppose we assume the equation

U^ r^Vdx, (i)

where Fis any function of ;r, j, /, etc., and suppose j;/
to be-

come the ordinate of some primitive curve. Then, by varying
^in the most general manner, we can pass to any curve which

can be derived from the first by infinitesimal changes in
.t'o, x^y

y, y, etc.

But we may also pass to the same derived curve by mov-

ing, without change of value, any ordinate of the primitive
curve an infinitesimal distance djtr along the axis of .v, and then

varying it so as to make it become the ordinate of the derived

curve for the new abscissa x + ^-^. In this method (^j/, ^y,

etc., will mean the difference between/,/', etc., for the primi-
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tive curve, and corresponding to the abscissa x, and the same

quantities for the derived curve corresponding- to the abscissa

X -\- ^x. Of course for any given value of x we may suppose
f^x\.o have either sign, or to vanish

;
and it is evident that when

the hmits are to be fixed, the latter supposition must be made

regarding the quantities ^x^ and Sx^,

264, We are led, then, to inquire what will be the expres-
sion for dU, when x also is regarded as capable of variation

throughout the definite integral U.

In (i) change x into x-{-dx, y into y -\- Sy, etc., and let

U' = [/+ 6U and V = V+ dF (2)

be the new values of [/ and V. Then, observing that dx will

become, by being varied,

Sd.v =
-^_(.v

+ ^-r)dx, (3)

we shall have

^' =
X''^"^^"+<'-)^--- (4)

Whence

^^^ dx ^^^

=jiy ^^+ ' ^)i (-+ <^-) '^'^ -£' ^'^--
(5)

This is exact
;
but approximating to the first order only, we

have
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where brackets denote the complete differential coefficient of

F; that is,

Moreover, it is evident that, to the first order,

6V^ Mdx + Ndy-^Pdy'+ etc. (9)

Hence (6) becomes

du^ K6x, - VM.+X^' )
my+p^y+ Qdy^+ etc.

-
{JVy+ Py"+ Qy'"+ etc.) dx \ dx, (10)

266. But the formulae hitherto emplo3^ed for Sy\ dy'\ etc.,

will not now hold true, so that we must, before we can fur-

ther transform (10), ascertain what will be the values of these

quantities under the present supposition.

First, in y change x into x-\-dx and y into y -\- dy^ and

we have

sy-^Ay±M-yJ ^/ -y .

"^ dx

dSy y'ddx
. . dx dx

, _ fdSy y'dSx\ f , dSx\— ^ , v

^ ~^ dSx ^~\dx dx IV '

dxj
dx

which is exact
;
and to approximate to any order required we

have only to develop sufficiently the second factor. Thus, to

the second order,
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or, omitting the terms of the second order.

To obtain to the first order the value of ^y" we have only to

substitute in (13)/ ior y,y" ior y', andy ior /\ so that

6y"^^{Sy-y"Sx)+y"'6x
=
£, {^Sy

- /Sx)+/"Sx. (14)

The Greek letter &? (omega, or o) is usually put for 6y — y'6x.

Then we shall find

.y =g +/'.., sy' = '-^+y",.,
(15)

which equations are, of course, true to the first order only.

266. Now substituting in (lo) the values of ^/y^y^ etc.,

derived from (15), that equation will become

dU= V,dx- V.dxo +Xy^'^+ ^^' + Q^"+ etc.)^;tr, (16)

where od' = —-, etc. Here oo, od'
, od", etc., take the place of

ax ^

Sy, dy', 6y'\ etc., in the former method, so that integrating by
parts, as in that method, we shall obtain

dU= V,Sx^
—

V,Sx, + k^oo^
—

h,0D^ + i,Go^'
—

i,oo^ + etc.

+£?^^- P' + Q" - etc>^^, (17)

where the coefficients of, (y^, od^, go/, etc., are the same as those

of ^y„ Sy,, Sy/, etc., in equation (5), Art. 36, /i, t, etc., being
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used as in equation (7), Art. 37 ;
while the coefficients of Godx

and Sydx are also identical.

Moreover, since dx^, dx^ and ^x^, dx^ mean the same thing
in the two methods, it appears that (^'^in this case is the same
in form as the most general variation of U found by the other

method, go taking the place of fy.

267. Suppose, now, we wish to discover by this method
the conditions which will maximize or minimize U. Then it

will appear, by the same reasoning as before, that (^C/to the

first order must vanish, while the terms of the second order

must preserve an invariable sign, becoming negative for a

maximum and positive for a minimum. Hence (17) may be
written

SU=L,-L,+X^'Mcodx

= L,-L, ^£^'Mdydx —fJ'MySxdx = o. (18)

Therefore the coefficients of Sydx and dxdx are so related

that if one vanish the other must vanish also, unless, indeed,

y should become zero throughout the curve.

Now ^x and fy under the integral sign are entirely inde-

pendent of any conditions which those quantities may be re-

quired to fulfil at the limits, and therefore we must have

L^
—

L^ = o and / Moodx = o. (19)

But QD, like Sy, is wholly in our power, Avhile M \s not, so that

we must necessarily, as before, suppose M to vanish, and we
can obtain no additional equation by considering separately
the integrals in the last member of (18).

268. Let us now briefly consider the terms at the limits.

Suppose, in the first place, x^^ x^j y^y /o> • • • • Jo^**""'^ to be
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fixed ;
that is, to have no variation. Then qd^, gj^, go/, etc.,

and Sjt:^ and ^x^, will severally vanish. For let y"*) be an}' dif-

ferential coefficient of j not higher than y**
-

1). Then we have

at either limit

and dx being zero at either limit, we have for that limit

d^QD ,.—
Gj(^) = O.

dx

Hence, in this case, L^ — L^ will vanish, and we must deter-

mine the 271 constants as we did formerly when all the limit-

ing values were fixed.

Let us next suppose x^ and x^ only to be fixed. Then, at

either limit, od = (^J/, od'= ^y, oo"^ dy" , etc., and assuming these

quantities to be unrestricted, h^, h^, i^, /„, etc., must severally

vanish, which are the same conditions for the determination

of the constants as we would have under the same supposi-

tion by employing the other method. Neither can we ob-

tain any additional equations by putting for cj, gd\ etc., their

values, and then making Sx at the limits vanish. If we make
the limiting values of y also invariable, c^^ and gd^ will vanish,

all the other conditions remaining as before, so that we shall

only lose the equations //,
== o and h^ = o, which will be re-

placed by the conditions that y^ and y^ must have given values.

Proceeding similarly, it will appear that when x^ and x^

are fixed, the same equations for the determination of the 271

arbitrary constants arising from the integration of the equa-
tion M = o will be obtained as would, under the same sup-

position, have been found by the other method.

Let us, in the last place, suppose that x^ and x^ are also

variable. Then, if no restriction be imposed upon any of the

variations, we shall have, besides the equations already ob-

tained, V^ = o and V^ = o, and we shall find that we cannot
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obtain any other equations. Here the conditions are the

same as those noticed in Art. JJ, and the 211 -f 2 equations
cannot in general be satisfied.

But suppose that, as in Prob. IX., the extremities of the

required curve are to be confined to two fixed curves whose

equations are, as in Art. 69, jj/=/and y
—

F, f and i^ being
functions of x. Here Sy has not the same meaning as in the

former method, so that equations (10), Art. 69, or rather equa-
tions (2), Art. yG, will not now be applicable. But it is evi-

dent that now Sy^ ^z^f^dx^ and dy^ = FJSx^; so that we shall

now have at the upper limit

^r = (//
-
j/) ^^^, ^/ = ] #- ir

- /) \ ^^. (20)dx^-"
-^ M

and similar equations in F hold for the lower limit. Now
observing that dx^ and dx^ here mean the same thing as dx^

and dx^ in the other method when used to change the limiting
values of x, we see from equations (2), Art. 76, that for either

limit we must substitute the same thing for Sy in the first

method as for gd in the second, and the same thing for dy' in

the first as for gd' in the second
;
so that the coefficients in-

volved must evidently be the same in both methods. Hence
we must always obtain by either method precisely the same

equations of condition at the limits.

269. Thus it will be seen that the results obtained by the

two methods are the same, whether as regards the general
solution, or the conditions which must hold at the limits, and
that nothing is gained by the latter method, while the labor

of obtaining the required results is somewhat increased.

This disadvantage will become still more obvious when we
seek to examine the sign of the terms of the second order.

We shall not, however, enter upon this examination further

than to observe that we must, in finding these terms, be care-

ful not to reject any of the terms of the second order. Thus,
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after having approximated to the second order in equation (5),

if we employ (13) and (14) in transforming the terms of the

first order, we must remember that the value of Sy which
we now require is given by (12), and that (13) and (14) are

not sufficiently accurate, and that we must therefore add to

the terms already assigned to the second order those which
are neglected in the first by the use of (13) and (14) ;

and it is

easy to see that this will generally involve us in much diffi-

culty.

It is believed that the foregoing account of the present
method will be found sufficient to enable the reader to follow

any solution which may be presented, which is all that is

necessary, since its adoption, as a mode of original investiga-

tion, cannot be advised.

Second MetJiod.

270, The method which we next proceed to explain pos-
sesses oftentimes decided advantages, particularly when we
come to consider problems involving three co-ordinate axes,

and is moreover that which is adopted by Prof. Jellett in the

discussion of geometrical problems. As we shall be obliged
to consider it at some length, the reader will, we think, most

easily comprehend its nature and use by the consideration of

an example.

Problem XLV.

// is required to discover the co?iditions which will maximize or

minimize the expressioji U ^^ j vVi -\- y''^dx, zvhere v is any

function of x andy only, and constants
,
the limits being fixed or

variable.

Now assuming s as the arc of the required primitive curve,

C/'may be written

u^ r^vds. (i)
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Let ab be the required arc, and on it take at pleasure any points

c, d, e, etc., and regard these points as knots or spots upon a

flexible cord. Then, when we make any infinitesimal altera-

tion in the form of ab, the arcs ac, ad, ae, etc., will undergo no

change in length, but the co-ordinates of the points c, d, e, etc.,

will in general undergo an infinitesimal change.
But the arcs ac, ad, etc., are any values of s, measured from

a, so that it appears that we can pass from ab to any derived

curve by varying x and j/ in (i), while regarding s, and there-

fore ds, as undergoing no variation.

27!. Taking the variation of (i) under this supposition,
we have

But (2) gives the variation of U only under the supposition
that we need not make any change in the length of the primi-
tive curve, which is not usually the case. For suppose the

required curve be conditioned to always connect two fixed

points or two fixed curves. Then if we vary ab without pro-

ducing any change in its length, we shall in reality reduce the

problem to one of relative maxima and minima, in which the

length of s is to be fixed, and in which, as we have already

shown, the form of the derived curve cannot be wholly unre-

stricted. If, then, the problem be, as we have assumed, one of

absolute maxima and minima—that is, if we are required to

vary the form of ab in the most general manner consistent

with the method of variations—the arc of the derived curve

connecting the given points or given curves will not neces-

sarily have the same length as ab. Still it is not necessary to

vary s or ds under the integral sign, because we can evidently

pass from ab to any derived curve AB by first, before varying
ab, giving to it increments or decrements at a and b so as to

obtain a new arc equal in length to AB, and then varying the

form of this new arc in the most general manner.
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But as these increments must be infinitesimal, we may de-

note them by ds^ and ds^. Now if in (i) we change the hmits

into s^ -[" ^^^ ^^<^
-^1 + ^^v we may find approximately the change

which will result to U in precisely the same manner as if the

expression were U =^ I Vdx, and x^ and x^ only were to be

varied. Hence this change will be

V, ds,
-

V, ds, + \ \^^f'^
-
\ \j^f'^'

+ ^^^^ (3)

where brackets denote the total differential coefficients. But

we wish to find t^^to the first order only, so that we may
write, as the new value of U,

U' ^^ U -\- z\ds^
—

v^ds^ = i\ds^
—

v^ds^ -|- / vds. (4)

If now we vary the form of the arc in the most general

manner, and suppose U' to become U'^, U" will exceed U' by
the second member of (2) increased by dv^ds^— Sv^ds^. Hence,

observing that the last two terms, being of the second order,

must be rejected, wc shall find

u"-u=su= V, ds,
-

., ds, +X" 1J s--

+j/y\dS'
(5)

which is the form of (^"^ which we must in general employ
whether the curve be required to connect two fixed points or

two fixed curves.

272. As Sx and 5y now denote the changes which the co-

ordinates of any point when regarded as fixed on the arc, like

a knot on a cord, would undergo, owing to any infinitesimal

alteration in the form of the arc, it will, we think, appear after

a little reflection that we cannot regard ^x and Sy as entirely

independent, although we cannot state explicitly the nature

of the relation subsisting between them. We can, however,
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easily assure ourselves that they are not independent. For if

they were, then, since d 6^ must vanish in order that f/may be

y-i-idv jydv
a maximum or a mmimum, we would have -- = o and -- = o.

ax ay
Whence

dv dvdy _ Vdv~\ _
dx dy dx VjdxA

Therefore we would have as a condition necessary to a maxi-

mum or a minimum -^^ = a constant, which is false, since in

Prob. VII. we have

u^ ly ^Y^y- dx ^ ly ds,

and y is not constant.

If we could express ^y explicitly in terms of Sx and other

quantities, we might eliminate one of the variations, and then

equate the coefficient of the remaining variation to zero.

But as this cannot be done in the present case, an ingenious
method of overcoming this difficulty has been devised by La-

grange, which we now proceed to apply, reserving a general

explanation of this method until the reader has become some-

what familiar with its spirit.

273. We have always, whether along the primitive curve

ab or the derived curve AB, ds" — dx^ -\-dy^^ so that

^-+/^_i=o, (6)

where accents will denote differentiations with respect to s
;

and as this equation must always hold, it follows that the vari-

ation of its first member—that is, the change which that mem-
ber will experience when we change x into x -\- ^x and y into

y-{- ^y, s remaining unaltered—will be zero. Hence we must
have

x'dx' -\-y'dy' = o. (7)
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Then, when we change x into x -\- Sx, the new value of x' is

-(.+ <J.) or .+— .

Hence

ds
^-' = ^- •

(8)

Similarly, when we change x' into x' -f- Sx\ the new value of

x" is

--(.+<y.) or . +--.
Whence

ds ds
<^^ =-7r = ^7^- (9)

In the same way we shall find

<jy = ^, Sy =-^, etc.
(10)

Now these formulae are analogous to those in Art. 9, and

are, unlike those obtained in the preceding method, exact.

Moreover, it is evident that equations similar to those just

obtained must hold when we have any number of variables

X, y, z, u, etc., all dependent upon the same independent vari-

able, which is itself incapable of receiving any change from

being varied, the limiting values only being supposed to -be

susceptible of an increment.

274. Now because (7), (8) and (10) are true, we may write

t/So 1

dSx
, , , dSv \ J , ,—
^ly-^.\ds^O, („)
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where / may be any finite quantity we please, either constant

or variable. Transforming (ii) in the usual way, and adding
the resulting equation to the value of dUm (5), we have

dU= v,ds,
—

v,ds, + l^x'dx+ y'6y\
—

IJ^x'Sx -^y'^y),

=
L,-L,^£l\MSx^NSy\ds, (12)

where the suffixes x and y denote partial differentiation with

respect to those quantities.

As we have now introduced into SU the only connecting

equation between Sx and 8y, and have reduced the result as

far as possible, it will appear, by reasoning precisely like that

hitherto employed, that since an unrestricted integral cannot

equal a given function of quantities relating to the limits only,

we must have

Z,-Z, = o, £l'\MSx^NSy\ds
= o. (13)

Now since / is in our power, suppose it to be so taken as to

cause M to vanish throughout U. Then the second of equa-

tions (13) will become / NSy ds = o; and as Sy is evidently

entirely independent of N, this equation can only be satisfied

by making N also vanish throughout U,

275. We have then the equations

Vx — ilx')'
=: O = Vx — Ix" — I'x'^ )

\ (14)

Vy-{ly')' = o = v^-l/-l'y'.)
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Multiply the last members by x' and y' respectively, and add.

Then, observing that

v,x'^Vyy'=^v', x'x"-\-y'y"^0, .r"+y' = i, (15)

we shall obtain

v' — I' ^o and I — v -\- c. (i6)

276. Before proceeding further we must fully determine

/ by ascertaining the value of c, which can be done by means
of the terms at the limits, which we will next examine.

To prepare our way, we observe, first, that it is immaterial,

in passing from a primitive to a derived curve, whether we
first increase the limits by the positive or negative increments

^^0 and ds^, and then vary the new arc, or first vary the form

of the entire arc, and then add these same increments to its

extremities.

In the second place, the increments which would result to

X or y\n passing along any infinitesimal arc, ds^ or ds^, while it

belongs to the primitive curve, and also after it has undergone
an infinitesimal change of form, but none in length, and has

assumed its new position as a part of the derived curve, can-

not differ by an}^ term of the first order, although they may
differ by a term of the second order.

277. Suppose, first, that the curve is to connect two fixed

points A and B, the required primitive curve being ab, so

that before it is varied a will be at yi, and /^ at B, and consider

the upper limit. At b add a positive or negative increment

ds^, and denote the new arc by ac. Also let x^ -f <^-^i ^^d

y^ + dy, be the co-ordinates of c ; then it is evident that the

difference between the co-ordinates of b and c—that is, the in-

crements which would result to x and y by passing along the

arc from c to b—must be —
dx^ and —

dy^ or — x^ ds^ and
— yl ds^. Now vary the form of ab. Then the pomt ^ will

assume a new position whose co-ordinates will be x^ -f~ ^^\ ^"^^
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Ji + ^y-ii while the point c will now fall upon B. Hence Sx^

and Sy^ are the increments which x and y receive as we pass
from ^ to ^ on the derived curve. Therefore, as the arc Bb
on the derived curve was the arc be or Be on the primitive

curve, having, without change of length, merely altered its

position and form infinitesimally, it appears, by the second

remark of the last article, that, to the first order, we must

have

Sx^ = —
x^'ds^y dy^ = —

y^ds^ ; (17)

and similar equations would, of course, hold at the lower limit.

278. Next, suppose the required curve is to connect two
fixed curves whose differential equations are dy^f'dx and

dy = F'dx, and consider the upper limit.

Let the required primitive curve cut the fixed curves at b

before, and at B after it has been varied. Then we can easily

find the co-ordinates of B from the first remark of Art. 276.

For when we vary the primitive curve, the co-ordinates of the

extremity in question will become x^ -\- Sx^ and y^ + Sy^ ;
and

if now to this extremity we add the positive or negative
increment ds^, denoting by dx^ and dy^ the corresponding
increments of x and y, we shall reach B, whose co-ordinates

must therefore be x^ -j- ^-^1 + '^^i ^^^ j, -\- Sy^ -\- dy^. Sub-

tracting x^ and 7i, we find the changes which x and y experi-
ence as we pass from b to B along the fixed curve to be

respectively Sx\ + dx^ or dx^ -f" x^'ds^ and dy^ -\- dy^ or

But the increment which results to y in passing along the

arc bB must be /^ times that which results to x\ so that we
must have

Sy^+y:ds^f,\dx, + x:dsy,
'

(18)

and a similar equation in F^ can evidently be obtained for the

lower limit. Of course these equations, like (17), are true to

the first order only, because we have estimated ds^ along the
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derived curve, whereas it should be taken along the primi-

tive curve.

279. Let us now consider the terms at the limits in (12),

first supposing the required curve is to connect two fixed

points. Here substituting for dx^ and dy^^ and also for Sx\

and
c5jj/„,

their values from (17), and observing equation (6),

we shall obtain

{v — l\ ds,
— {v — l\ ds, = o. (19)

But ds^ and ds^ are entirely independent, so that their coeffi-

cients must severally vanish. Hence we have /,
=

v^, and c

in (16) must become zero, giving us /= 7^ throughout the in-

tegral.

Next suppose the curve is to connect two fixed curves as

in the last article, and consider the upper limit. Substituting
the value of Sy^ found from (18), this limit gives

V, ds, + I, x;Sx, + l,y,\f'Sx + fx'ds - yds\ ; (20)

and a similar equation will hold at the lower limit. Now
these two limiting equations must be absolutely independent,
because we may suppose one extremity of the required curve

to be absolutely fixed. We must, therefore, equate (20) to zero.

Now it will appear upon a little reflection that dx^ and ds^

must be also entirely independent, so that we may equate
their coefficients severally to zero. Hence, if l^ be not zero,

(20) will give

^. + hyM'^' -y\ = o, ^/ +/>/ - o. (21)

Substituting in the first of these equations for //jk/ its value,
—

x/, found from the second, and observing equation (6), we
obtain, as before, ^j— /^

= o
;
so that here also, as appears from

(16), v = L

If /j should become zero, then, since neither x/ nor y/ can

become infinite, the upper hmiting terms would reduce to
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v^ds^ = o, SO that v^ must also vanish. Hence, here also, c in

(i6) vanishes, and we therefore have always v — L

280. The reader of Prof. Jellett's work will observe that

in Chapter IV., in which he adopts this method, he has, in

giving the terms at the limits, uniformly omitted the terms

V^ds^
—

V^ds^y and this omission has led him into an unsatis-

factory method of determining the constant c, which is in his

book a, and which, as we have seen, can be determined regu-

larly by the equations at the limits. (See Todhunter's His-

tory of Variations, Art. 348.) It happens, however, that his

results in discussing by this method the conditions which
must hold at the limiits are in every case correct, although
the method by which they are obtained is certainly not

strictly so. The reader will find it profitable to verify this

latter assertion, which is made upon the authority of the

author alone.

281. Let us now return to the general solution. Putting
V for /in the last members of (14), we have

vx'', Vy
— yv' = vy". (22)

Now in these equations multiply v^ and Vy by ^''^+y^ which
is unity, and put in each for v' its value from the first of equa-
tions (15). Then, reducing and factoring, we shall obtain

y'i:i'xy'
—

'Vyx')
= vx", x'(vyx'

—
v^y') = v/\ (23)

Multiplying the first of these equations by y\ the second by
x\ and subtracting the second from the first, remembering
equation (6), we have

'^x/— 'Vyx'
=. V {y'x"— x'y"). (24)

Let r be the radius of curvature. Then we know that

y'x" — x'y" ~ -. Hence we may Avrite
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- — -
{vxy'

—
Vyx') — {v^ COS A 4- Vy cos B\ (25)

r V ^

where A is the angle which the normal makes with the axis of

x^ and B the acute angle Avhich it makes with the axis of y.

It is impossible to proceed further with the solution so

long as the form of v is wholly undetermined
;
but equation

(25) will enable us to solve many problems with great ease, as

we will now show.

282. Consider Prob. I. Here U=J^
^

ds, so that v = i,

Vx = o, % = o. Therefore equation (25) gives
— = o. Hence,

r being infinite, the solution must be a right line.

Turn next to Case 2, Prob. II. Here ^^may be Avritten

XSi
(Is I I——y SO that V =: -—

=-, Vx = o, Vy = 3, and (25)
-

\y Vy V"

prives — = and r = 21/ sec B. Let ;/ be the normal.

Then 7t ^= y sec B and r = 2;/, which is known to indicate

that the required curve must be a cycloid.

In the last place, consider Prob. VII. Here we may write

U— I 'yds, so that v = y, V:^ — o, Vy — i, and (25) gives
t/So

- = and r — — y sec B. Hence, in this case, the
r y
radius of curvature must equal the normal estimated in an

opposite direction, and this is known to indicate that the

curve is a catenary, the directrix being the axis of x.

283. In all these problems we shall obtain the same equa-

tions at the limits for the determination of the arbitrary con-

stants as we would if we had regarded x as the independent
variable. For suppose, first, the curve is to connect two

fixed points. Then, as shown in Art. 279, the hmiting terms
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Will take the form of (19), and v and / being always equal, they
will entirely vanish, so that the constants must be determined

by the circumstance that the curve is to pass through two
fixed points, which are evidently the same conditions as we
would have obtained had we assumed x as the independent
variable. If we next require that the curve shall always have

its extremities upon two fixed curves whose equations are as

in Art. 278, then we shall obtain equations (21). Now the first

of these equations gives no direct condition regarding the

limits, but, with the aid of the second, serves merely to deter-

mine ^ in (16), <; being an additional constant necessarily intro-

duced by the employment of the new quantity /. But divid-

ing the second of these equations by j/, and multiplying by
\yx)v we find (i -^ f'yo^^

—
o, and a similar equation for the

lower limit. These equations show that the required curve

must meet its limiting curves at right angles, which conditions

are also the same as would have been obtained had we assumed
X as the independent variable.

Problem XLVI.

284. Lef V and u be any functions of x andy only, with con-

stants, and let it be required to jnaximize and minimize the expres-

sion

Here, as before, because s has been made the independent
variable, x and y, and consequently their variations, cannot
be regarded as entirely independent. But equation (6), Art.

273, must always hold between x and j/; and as this gives an

imphcit relation between them, the variation of that equation
must involve such a relation between their variations. Hence,

multiplying the variation of (6), as before, by an unknown
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quantity /, and transforming the variations by equations (8) and

(lo), we may, as before, write equation (ii). Art. 274.

Now it will appear, by reasoning precisely like that em-

ployed in the last problem, that to vary ^in the most general

manner, even when the required curve is to pass through t\\ o

fixed points, we must add to the terms at the limits the terms

V^ds^
—

V^ds^. For it is evident that the reasoning there used

would be equally applicable if, instead of supposing £/ to be a

function of x and y only, it had been any function of x, y, x',

^''\y,y'j etc. Now varying (i), adding equation (11), Art. 274,

and integrating by parts as usual, we shall obtain

6U-^l\ ds,
-

V, ds^ + {u + lx'\ 6x,

—
{u + lx'\ dx, + / J//' dy^

—
l.y^Sy^

+ r^ \ \yx+ u^x' - u'- {ix'y^Sx + {_vy -f uyx'- {iyy^dy\ds

= L,-L,+£'\MSx+ NSy\ds. (3)

Here, as before, L^ — L^ and the integral must severally van-

ish whatever be the value of /.

If now, as before, we suppose / to be such a quantity as

will reduce M or N to zero throughout U, it will appear by
the same reasoning as before that the other must vanish also.

Making M and N zero in (3), we have

(ix' -\-uY = v^-\- u^x', {lyy = Vy+ tiyx\ (4)

Multiplying these equations respectively by x^ and y, and

adding, observing equation (6), Art. 273, we have

I' -\- u'x' = v^x' -|- Vyy' -\- x'(uxx' -\- Uyy') = v' -\- u'x' . (5)

Hence, as before,

l' = v' and l=v-^c. (6)
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285. Now in determining c we must remember, as before,

that if we can express L^ — L^ in terms of ds^ and ds^, we may,
since these quantities are independent, equate their coefficients

severally to zero
;
so that we need here consider but one limit.

Let us first suppose that the curve is to pass through two. fixed

points. Then, taking the value of L^ from (3), and substitut-

ing in it the values of dx^ and dy^ from equations (17), Art. 277,

and remembering equation (6), Art. 273, we find v^
—

l^
= o,

which shows, as before, that v = I throughout U, c in (6)

being zero.

Next suppose the curve is to connect two fixed curves

whose equations are as in Art. 278. Then in L^ substitute the

value of (^F, found by transposing equation (18), Art. 278, and

equate the coefficients of ds^ and Sx^ severally to zero, because

these quantities must be independent. Then, we shall have

«. + /,-^-,' + hyj: = o, V, + u,x:+ /j'.'^//.'- /,^." = o. (7)

Multiplying the first of these equations by x^ and subtracting
the second from the product, we shall, by observing equation

(6), Art. 273, have l^
—

i\ = o, so that here also v =^ I.

286. Putting v for /, and differentiating the first term in

each, equations (4) become

Vx — v'x' -\- Uxx' — u' ^= vx'\ Vy
—

v'y' -\- iiyx' =. vy" . (8)

Now multiply the first term in each of these equations by
x''^y, and put for v' and u' their values. Then factoring,

we have

y^Oxy'
—

i^yx'
—

u,} = vx", x'ivyx'
—

v^y' + u,])
— vy" . (9)

Multiplying the first of these equations by y\ the second by
x\ and subtracting the second from the first, we readily ob-

tain, as before,

-— — -
(z'x cos A -{- Vy cos B+ ^y)' (10)
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287. Let us next apply this formula to a few cases, begin-

ning with Prob. XV. Here U —J^ {yji:'-\- a) ds, so that v = a,

Vx = o, Vy = o, u =f, Uy= I. Therefore equation (lo) gives

- z= . Hence the curve must be a circle, since r is a con-
r a

stant. The negative sign is in this case as it should be, be-

cause it has been shown that a must be negative.

Turn next to Prob. XVI. Here U =fj\/x'+ ay)ds ;
so

that V = ay, v^ — o, Vy = a, it = y, Uy — 2y ;
and equation (lo)

gives
•

I _ cosB 2

r y a

But = -, n being the normal; and as we have already
y n

shown that a must be negative, we may write —
|

— = —-.

r 71 A
We cannot in this case proceed to the solution obtained in

Prob. XVI. without expressing the value of r and integrating
as in that problem, although it is evident enough that the

sphere will satisfy the last equation.

We may remark, in passing, that Probs. XVII. and XVIII.
are to be regarded as belonging to the preceding problem,
because the factor of ds is a function of x and y only, together
with constants.

288. Here also the conditions for the determination of the

two constants which will enter the complete integral of equa-
tion (id) will be always the same as though we had assumed
X as the independent variable. For if the curve must pass

through two fixed points, we shall have for the upper limit

L, = {v,
—

/,)as,
=

(v,
—

v,)ds,.
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That is, the Hmiting terms will vanish as they would by the

other method. But suppose the curve is to connect two
fixed curves. Then if x were the independent variable, we
would obtain for the upper limit

«Xi+/V+'''.(i+^///) = o;

and multiplying by x\ remembering equation (6), Art. 273,

we shall obtain the first of equations (7). Now the second of

these equations gives no new condition, but merely enables

us to determine the constant c in (6). To ascertain these con-

ditions, let be the angle between the required and the upper
fixed curve at their intersection, t the angle whose tangent is

f\ and a the angle whose cosine is x' . Then, multiplying the

first of equations (7) by cos /, we have

u^co^ t -f- ^i(cos a cos t -f- sin a sin
f)
=

u^cos t -\- v^co^ — o. (i i)

Problem XLVII.

289, Let r be the radius of curvature of a plane curve
^
and V

any function of r and constants. Then it is required to determine

the conditions which will maximize or minimize the expression

Here
u=fyds. (I)

SU=V,ds,- V, ds, +/'' VrSrds. (2)

Now the following equations are known to be true :

-^R= y'x" - x'y", \ = R' = x"' ^ y"\
r r

\ (3)

x" +/^ = I, x'6x' +ysy = o, x'x'' +yy'= o. J

We must now obtain dr. We have

s{R') = 2{x"dx"+y'dy')=^ ^=^-.
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Whence dr ^ - r\x"dx" -^y"^y"\ (4)

Hence, proceeding as before, and putting v for F^r^ we have

dU= V,ds,- V,ds,

Ar r\- v{x"dx"-^y"Sy") + l{x'dx' ^ y'dy')\ds = o. (5)

Whence, as usual, we obtain, after changing signs, the equa-

tions

iyx")" + {Ix')'
= O, {vy")" + (//)'

= o, (6)

and

(.^yy j^l^' ^a = vx'"+ v'x" + lx\
I

Multiplying the first of these equations by y' ,
the second by

x'
^
and subtracting the second from the first, we have

yi^yx'"
-

x'y'") + v\y'x" - x'y") = ay'
- bx' = vR' + Rv' . (8)

Whence „ ^^ 2 ,
, / xvR = Vrr^ = ay — bx -^ c. (9)

290. It will be seen that in this case / has been eliminated,

and we will now examine the method of determining the con-

stants in (9). Consider the terms at the upper limit, arising

from the usual transformation of (5). These are

VJs,+ \(vx'y-\-lx'\,Sx,

+ \{vyy + ly'\. Sy,
-

v,{x"dx' +y'Sy\ = o. (10)

Now it at once appears from (7) that the coefficients of ^x^

and Sj/^ are respectively a and b
;
and if for 6/ we put its value

derived from the fourth of equations (3), the terms
y

beyond dy^ will become
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Hence the terms at the upper limit become

VJs,-\-adx,^bdy, -
I
^-

I
dx: = o; (12)

and a similar equation will evidently hold at the lower limit.

Now the last term of the first member of (12) is evidently

independent of the others, so that we must have Vrr" = o at

both limits. Now suppose the line joining the extremities of

the required curve be assumed as the axis of x. Then, because

y and F^r^ vanish at both limits, we have, from (9),

o =1 — bx^A^ c and o — — bx^-\- c\

so that b and c must vanish, and then (9) becomes

VrT'^ay, (13)

291. Suppose the curve is to pass through two fixed points.
Then the terms at the upper limit become

V^ ds^ -\- aSx^ = (v
—

<^^0i ^^1 — ^'

the second member resulting from the elimination of dx^ by
means of equation (17), Art. 277 ;

and a similar equation holds

for the lower limit.

But suppose the curve is to connect two fixed curves

whose equations are as heretofore. Then the terms at the

upper limit are

Fj ds^ -[" ^^^1 + ^^Ji — ^' (14)

Ehminating dj, by means of equation (18), Art. 278, and then

equating severally to zero the coefficients of ds^ and Sx^, we
shall obtain

K + ¥/< - hy! = 0, a + bf: = 0; (15)

and similar equations for the other limit. Now if the axis of

X join the points of intersection of the required curve and the
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two fixed curves, b will vanish, while a cannot, as appears
from equation (13) ;

so that the second of equations (15) can

only be satisfied by supposing// to be infinite.

Hence the tangents to the two fixed curves at their points
of intersection with the required curve must be at right

angles to the line joining those points.

292. As an example of the foregoing theory, consider

Prob. III.

Here

SO that V=r, [>= i, and equation (13) gives r" = ay. Now
as the axis of x in this case joins the two extremities of the

required curve, it is readily seen that the cycloid having its

cusps upon the axis of ;r is a solution, because in such a cycloid

r = 2 VDy, D being the diameter of the generating circle.

293. Another interesting apphcation is the following:

An elastic spring AB is adjusted between two right lines so

as to be tangent to both at its extremities A and B ; it is required

to determine the form which the spring must assume in order to

be in equilibrium.

According to the principle of Daniel Bernoulli, the curve

AB must be such as to minimize the expression U =J --.

J 2
Hence V = -, V,.

— —
r-> and equation (9) becomes

r r

= ay — bx -\- c, (16)
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But since AB is compelled to be tangent to the lines AC and

BD, its extreme tangents have a fixed inclination to the axis of

X, and therefore d;r/, dj/, ^^J and Sj/J vanish, and we need

not now have Vrr"" = o at either limit. But equations (15) are

universally true, and the second of these gives

a-^bf — o and a+ bF'=^ o. (17)

But since the lines A C and BD are not parallel, the constants

/' and F'
,
which are the tangents of the inclinations of these

lines to the axis of x, are unequal ;
so that in this case we find

that <^ and b must vanish. Then, by (16), we find that r is a

constant, so that AB must be a circular arc if r be finite.

But now the first of equations (15) would appear to give

V — -2=0 for both limits
;
which evidently cannot be true.

To obviate this difficulty we must suppose the spring to have

a given length. Then ds^ and ds^ will vanish, and the first of

equations (15) will not necessarily hold.

But under this supposition we should, according to Euler's

method, have written V= —
-{- d, which would produce no

change in any equation except the first of equations (15) ;
and

this, when a and b vanish, would give- + <^'= o at either limit,

which presents no difficulty.

T/iird Method.

294. We have already seen that when x is the indepen-
dent variable, we are, although the supposition is unnatural,

permitted to vary x
; and in like manner, when s is the inde-

pendent variable, we may ascribe variations to s throughout
the range of integration. Indeed, this is the method usually

adopted ;
and as we are generally obliged to increase or de-

crease s at its limits, the method does not seem altogether
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unnatural. The following illustration may perhaps aid us in

forming a better conception of the two methods.

295. Suppose we had a curve AB connecting two fixed

points or two fixed curves, and suppose the curve to be formed

of non-elastic wire on which notches are placed at our plea-

sure, the wire extending somewhat beyond A and B. Then
when we vary the form of AB in the most general manner
consistent with variations, we shall, in general, find that we
are unable to make the new curve connect the two points or

curves without either adding or excluding certain wire ad-

jacent to A and B. Still the distance of any notch from some

given notch—that is, s—undergoes no change, a positive or

negative increment merely being added to the limits. This

may illustrate what takes place in the first method.

Now suppose the original piece to be expanded by heat or

contracted by cold until it is able to form the required arc of

the derived curve. Then, although we increase or diminish

the length of the arc AB, we do not add or exclude any wire.

But now the distance of any notch from the given notch, or s,

will have undergone an infinitesimal change ;
that is, will have

become s^ ds. But, to render the illustration complete, we
must suppose the motion of any particular notch to be capable
of taking either a positive or negative direction, or of becom-

ing zero, or, in short, of following any law we please. In this

'case we would have an illustration of the method which we
are now about to employ.

296. Let us now examine the mode of employing this

method.

Assume the equation

U^£vds, (.)

where V is any function of s, x, x'
, x'\ . . . . y, y', y" . . . .

Now when we vary s, x, y, etc., the reasoning in the begin-
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ning of Art. 264 is rendered applicable to the present case

by reading s for x. Moreover, all the equations, including

(6), will be true if for x we substitute s in the limits, the differ-

entials and the variations. Beginning then with (6), we have

But

t/so ds ^so
^ '

where accents denote total differential coefficients, while literal

suffixes will denote partial differential coefficients
;
so that

V'=V,-^ V^x'+ V^,x" + V^.x"'+ etc.

+ Vyy + Vy.f+ Vy.>y"' + CtC. (4)

Now, to the first order, we have

6V^ V,ds-\- VJx+ V^.^x'+ V^nSx" -\-Qic.

+ Vy^y + Vy>dy + Vy..dy" + etc. (5)

Hence

+r \ Vx^^+ ^0"^^' + Va:'>dx" + etc.

+ Vy^y+ Vy,sy^ Vy,.s/'+ etc.

-( F^^'+ V^,x"+ V^,.x"'+ etc.

+ Vyy'+ Vy,y" + F,„/"'+ etc.) Ss\ds. (6)

Now employing gd as before (Art. 265), let

GD^ =z (^;ir — x'ds and cb?^ = 6y — y'Ss.



OTHER METHODS OF VARIATIONS, 35/

Then, by the same method as that employed in Art. 265, we
obtain

Sx' = {G^y+ x"Ss, dx'' = {G^y + x'^'Ss, etc., )

I (7)

d/ = {ooyy +y'^s, dy" = {Goyy^ +/''^s, etc.
)

But these equations are of course, Kke those in Art. 265,

true to the first order only. By the use of these equations,

(6) becomes

+ pi V,co-+ VAoo^y + V,.{c^r + etc.

+ VyGDV+ Vy^Goyy+ VyioDvy+ etc.
\
ds. (8)

Hence, by the usual transformation, and giving for brevity

only the general form of the terms at the limits, we have

6U=^ Vds-\-{V^>- F^,/ + etc.)c^+(r^.,-etc.)(o^y + etc.

+ {Vy'- Vy>/ + etc.)c^^ + {Vy. -etc.)(G.^y+ etc. .

+ {Vy- Vy/+ Vy>>
" -

^tc:)ooy\ds. (9)

297. But dx and Sy, and consequently oof^ and coy, are not

wholly independent, because, whether we vary s or not, the

equations

x'"" J^y:=i and x'x" + y'y" = (lo)

must always hold throughout both the primitive and derived

curve. If, therefore, we wish to maximize or minimize U, and

for this purpose equate (^t/to zero, we must, as before, in order
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to obtain any available equations of condition, employ the

method of Lagrange. Now from (lo) we have

x'dx' +y^/ = = x\g^)'+ x'x"Ss-^y\Goy)' ^y'y"Ss

= x\oo^)' -\-y\ojy)' 4- {x'x" +yy')^s = x'{GD^y -\-y{oDyy. (i i)

Therefore, / being an undetermined quantity, we may, as be-

fore, write

£'i\x'{c^)'^y{oovy\ds

Now transform this equation and add it to (9), and let L de-

note the general form of the limiting terms L^ — Z^,M and N
being the respective coefficients of ooP^ds and coyds under the

integral sign. Then we shall have

L^Vds-\-{ V^^
- V^>/+ etc.+ Ix') G^+ ( V^u- etc.) (c^)'+ etc.

+ {Vv'- yy"'+ etc. + ly) ^y+ ( Vy.
-

etc.) {oovy + etc., (12)

J/= F. - Vy + V,." - etc. - {IxJ, (13)

N=Vy- vy + Vy."
- etc. - {lyy. (14)

Now it is evident that (13) and (14) are the same differen-

tial equations as we would have obtained had we followed

the preceding method, and ascribed no variation to s, I of

course in each case being supposed to be so taken as to cause

either M or N to vanish, so that the other will vanish also.

Hence, since the general solution will have the same form as

before, it will be necessary, in further comparing the two

methods, to consider only the terms at the limits.

298. It may be observed, in the first place, that the gen-
eral form of the limiting terms is the same by the two methods ;

6s^, 8s^ and the cos and their differential coefficients in the
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second method replacing ds^, ds^ and the (^'s in the first. It

would appear, therefore, that we might safely assume that the

same conditions at the limits could be ultimately obtained by
the two methods. But as it has not been deemed necessary
to consider the most general form of V by the other method,
it will, we presume, be sufficient to give Fthe same degree of

generality in this
;
that is, to show that in the three preceding

problems the same equations at the limits are obtained by
either method..

Suppose we make V a function of x and y only ;
that is,

apply this method to Prob. XLV. Then, by (12), we have, for

the upper limit,

L, = Vfis, + {lx'c^\ + (ly'c^y\
= 0. (15)

Now suppose the curve is to pass through two fixed points.

Then dx\ and S)\ vanish, because by this method x^ and y^

mean the co-ordinates of the actual extremities of the arc, al-

though 6x^ need not vanish, as the arc may have undergone an

alteration in length. Hence (0/^)^=
—

x^Ss^, {oofii)^—
—

yl^s^,

and (15) gives

Z,^|F-/(y^+yOh-o; (16)

so that Fj = /,. ^

Next suppose the curve is to connect two fixed curves whose

equations are as usual. In this case we shall have Sy^ =// ^x^.

Substituting this value in (15) and equating severally to zero

the coefficients of ^s^ and Sx^, because these quantities are

entirely independent, that of Ss^ will give the second and third

members of (i6), while that of dx^ will give

(/y + //'/X = o.

This is the same as the second of equations (21), Art. 279, the

interpretation of which is given in Art. 283.
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299. Next consider Prob. XLVI. Here V — v -\- ux\
V and u being functions of x and y only, so that V^' = u.

Therefore (12) gives

{v + ux'),ds, + {u + lx'\{p^\ + hy;{oDy\ = o. (17)

If now the curve is to pass through two fixed points, ^x^ and

<Sj/^
will vanish, and putting for go^ and aoy their values, the co-

efficient of 6s^ will take the form of the second member of

(16), which shows, as before, that V= I.

Next suppose the curve is to connect two fixed curves.

Then we have dy^
—

f^dx^. Now substitute in (17) the values

of 00^ and Qoy, and eliminate Sy^. Then, as ds^ and Sx^ are in-

dependent, we must equate their coefficients severally to zero.

That of Ss^ will, as before, assume the form given in (16), show-

ing that V— I, while that of dx^ will become

{u + /x^+/yr\=-o.

But this is the first of equations (7), Art. 285, which has been

already considered in Art. 288.

300. In the last place, consider Prob. XLVII. Here we
have

= KSs- V,^s,+£\- V^ds+dV)ds, (I)

Now
v = vy, (2)

But employing the reasoning by which we obtained Sr in Art.

289, only putting for every d an accent, we find

/=-rW" +/'/"); (3)

and therefore, putting z' = Vrr\ we have

v':= - v{x''x"' + yy^). (4)
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We also have

6V= VrSr = - v{x"6x"+ y"^y"\ (5)

dr having the same value as in equation (4), Art. 289, although
dx" and Sy" have not now the same values. Therefore, by
substitution, (i) becomes

+X^ v{x"dx"^y"dy") + v{x"x"' •\-y"y"')ds\ds

= vM -
v,ds, +£'{- ^[{c^r+ i^^r] w^' (6)

Hence, integrating and employing the method of Lagrange,
we shall evidently obtain for the general solution the same

differential equations as before (equations (6), Art. 289).

Now the terms at the upper limit will be

-v,{x"{<^y+y'{wyY\, = o, (7)

which is similar to equation (10), Art. 290.

But from equation (11), Art. 297, we see that we can elimi-

nate {coyy in the same manner as we did dy' in Art. 290 ;
and

as equations (7), Art. 289, are obtained in the general solution,

the terms at the limit will become

V^^s, + a{c^l + d{Goy\
-

( Vr r\ (c^)/ = o. (8)

But since (ce?^)/
=: Sx^'

—
x^''ds^, if Sx^' be unrestricted, so will

(g>^)/, and its coefficient must vanish ;
so that, as before, b and

c become zero, and we have

VM + a{c^\ = o. (9)
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Then if the extremities be fixed, d;ir,becomes zero, and we

have, as before (Art. 291), (F— ax')^ = o. But if the extremi-

ties are to be upon two given curves, then the terms at the

limits become

V,6s, + a{GD^), + d{c<oy),
= o. (10)

Now substitute in (10) the values of {go^)^ and (00^)^, and also

for Sj\ the value f^^x^. Then equating severally to zero the

coefficients of Ss^ and ^x^^ we shall have

Fi
— axl — byI = o and a + d// = o. (i i)

Eliminating a from the first of these equations by means of

the second, it becomes

K + ¥/< - h^ = o.

But the last two equations are equations (15), Art. 291, and
we have, therefore, the same conditions as formerly.

Thus we see that while the equations for the general solu-

tion given by the two methods are always necessarily the

same, the limiting equations are also the same eventually, at

least so far as we have carried our investigations.



CHAPTER II.

MAXIMA AND MINIMA OF SINGLE INTEGRALS INVOLVING TWO
OR MORE DEPENDENT VARIABLES.

Section I.

CASE IN WHICH THE VARIATIONS ARE UNCONNECTED BY
ANY EQUATION

Problem XLVIII.

301. It is required to determine the curve of mnimum length
which can be drazvn between two fixed points given at pleasure in

space.

Let ds be an element of the required curve. Then since

the curve is to be situated in space, and is no longer neces-

sarily plane, we have

ds = Vdx'+ d/+ dz" =:|/l +^ -f^ ^;r = |/l+y^+^'V;ir.

Therefore the expression to be minimized in this case is

Now it is evident that here, as in Prob. I., we must compare
the required curve with such as are drawn indefinitely near

at every point ;
and it is also evident that by giving to y' and
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z' indefinitely small variations, these variations being wholly
unrestricted as to sign, we can make any infinitesimal change
we please in the form of the primitive or required curve.

Now if we change y' into y' -|- dy\ and <2d into z' -\- Sz'
, while

X undergoes no change, the corresponding alteration in the

length of the required curve will h^ dU\ and the method ot

finding SU vn its untransformed state needs no explanation ;

that already given being perfectly general whatever be the

quantities involved in U,

302. Therefore, to the second order, we have

dU= r^
\ -—^jL—:r^. 6y'+-- ^'

8z' \ dx

+ Lrj __I_-Ml_„ .y.+ '+/'_- ..>»

Now it needs no additional explanation to show that if U is

to become a minimum, the first integral in (2) must vanish,
while the second must become invariably positive. Hence,
to the first order, we have

6U=r'\ y' Sv'\.
^'

Sz\dx

= r'
,

^^ Sy'dx + r^ ^'
dz'dx = o. (3)

But since z is also a function of x, we may put z, z\ z", etc.,

for y, /, y\ etc., in the reasoning of Art. 9. Then we shall

d'^'^z
find (^^^) =:

-^—
-. In like manner it is evident that when x
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receives no variation, if we had any number of variables y, z,

u, etc., all regarded as functions of x, the reasoning of Art. 9
would apply to each, and we would have

dy.,= ^^, tf^«)=f^-, <y««^^'i. etc.; (4)-^
dx"" dx'^ dx''

^^^

and these equations w^ill hold whether y, z, w, etc., are inde-

pendent, or are connected by some equation.

303. Therefore, transforming SU'vcv the usual manner, we
have

6U=
\

y' X Sy^
-

\
__Z____-j 6y,

— I — -^ ^ Sydx — I - Sz dx = o
^^0 dx

\/' I j^ y^ j^ z'^
-^ ^^0 dx

4/x-[-j/'^-|-y^

= K8y^-Kdy,-\.H,dz, - H,Sz, ^£^\M6f^NSz\dx, (5)

where J/ and iVare, as previously, total differential coefficients.

But as the required curve is to pass through two fixed points,

dy and Sz must vanish at both limits, so that ^C/ will consist

only of the terms under the integral sign in (5).

Now Sy and Sz are here entirely independent. For we

may suppose the derived curve to be obtained by varying
one of the quantities y or z, thfe other undergoing no change
whatever

;
or we may suppose it to be such as would require

us to vary both. Hence, that (^f/may vanish, the two inte-

grals in (5) must severally vanish.

But both (^Kand dz are entirely in our power, and are each

as unrestricted as is dy in Prob. I. Therefore, to make both in-
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tegrals necessarily vanish severally, we must have M — o and

304. Equating M and iV severally to zero, we shall obtain

y =: = c and _ —r^— = c' . (6)

Now solving these equations by common algebraic methods

for y' and z'
,
we find both these quantities to be constants, say

a and a' respectively. Whence, by a second integration, we
find

y
— ax -\- b and z = a'x -\- b\ (7)

the equations of the right line in space.

This is, of course, only a general trial solution, and to ren-

der it applicable in any particular case we must show, first,

that real values can be obtained for the four arbitrary con-

stants which it contains, and, second, that the terms of the

second order in d^^ become positive.

305. Let us first suppose that the line is to pass through
two fixed points whose co-ordinates x^, y^, z, and x^, y^, z^

are known. Then we have

and these equations are evidently sufficient for the determina-

tion of the constants a, b, a' and b'
;
and we see that, because

these constants have the meaning explained in works on ana-

lytical geometry, they will always have real values.

But suppose the limiting values of x only to be fixed
;
that

is, that the line is merely to have its extremities always situ-

ated in two fixed planes, each perpendicular to the axis of x,

their equations being x :=^ x^ and x ^ x^. Then it will appear,

by the same reasoning as has been hitherto employed, that the

portion of (5^ f/ remaining under the integral sign must be en-
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tirely independent of that which is free from this sign. It

must, moreover, be plain that the last statement would hold

even should V contain other dependent variables besides z,

and will also hold whether these variables be functions of x
which are completely independent, or are in some manner
connected.

306. Therefore, since L^
— L^ must always vanish, we

must here have

K^y. - hfy^ + Hfiz, - H,Sz, = o. (9)

Now in the present case it is evident that the quantities dy.,

^fof ^^ij ^^0 ai'e entirely independent, and hence the coefficients

of these quantities must severally vanish, and we have

h, = o, //„
= 0, H,^ o, H, = o. (10)

But we see from (6) that h — c and H = c'
, so that (7) gives

y = b and z = b', a and a' becoming zero. As the four condi-

tions given by (10) are here equivalent to but two, the con-

stants b and b' are undetermined. This case is similar to that

in Art. 43, the line being here also parallel to x. If we fix

the values of y and z at either limit, b and b' are determined,

becoming those values respectively ;
and if we give one limit-

ing value only, the constant which equals that value is deter-

mined, while the other remains undetermined.

307. It being possible to cause the terms of the first order
in ^^to vanish, let us next consider whether those of the sec-

ond order will become positive. Now it appears from (5) that

these terms may be written

2'J'". (i-|_y»-^^")e
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and as we may regard (i +y + -s''')^
as positive, d£/is posi-

tive, and the solution renders U a minimum.

308. Let us now consider the case in which the limiting

values of x also are to undergo variation. Here no new prin-

ciple is involved. For, by the same reasoning as before, it

must be evident that if V be any function of x, y, z, u, etc.,

and the differential coefficients of y, z, u, etc., with respect to

X, all being regarded as functions of x, and we change the

limits into x^ -f- dx^, and x^ -f- dx^, and also vary all the quanti-

ties except X, and then approximate as before to the second

order, we shall merely be obliged to add to the value of d 6^ ob-

tained by supposing the limiting values of x only to be fixed,

the terms

V, dx,
- Fo dx,+^ dx^ + SV, dx,, (i2)

where accents denote total differentials, so that

F := F, + Vyy'+ etc. + V,z' + etc., )

and Hi 3)

(^F= VySy-\- Vy.dy' + etc. -\-V,^z-\- V,,6z' + etc.
)

Therefore, if in the present case we regard the terms of the

first order only, we must merely add to the limiting terms

already obtained, the terms

V^dx - VJx, or V(i +y^ + z'\ dx,
-

V{i +/' + z'\dx,.

But it is plain that if dx^ and dx^ be entirely unrestricted,

we must have Vi -\- y"" -^ z"" = o at both hmits, which is clearly

impossible without renderingy or z' imaginary.

309. But suppose the required line is always to have its

extremities upon two surfaces whose equations are known.

Then it is plain that the quantities Sy^, dz, and dx^ will not be

entirely independent, although any two of them will be in-
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dependent, so that if we can eliminate any one of the three,

we shall have the same number of limiting equations as when

x^ and x^ are fixed. We must, however, in this case adopt a

method somewhat different from that by which we obtained

equations (10), Art. 69.

As the most convenient form, let the equations of the sur-

faces at the upper and lower limits be respectively

/(.r, y,z)^ o^f and Fix, y, z)
= o = F. (14)

Considering the upper limit, suppose the required line when
a minimum to meet the surface at a point D before, and at a

point F after, having been varied. Also let the co-ordinates

of ^—which is, of course, indefinitely near D—be x^ -\- dx^, Y^,

and Z^. Then, when in f^ we substitute for the co-ordinates

of D those of F, we cause f^ to undergo no change, as it will

remain zero. But we can evidently pass from D to Fhy first

passing to the derived curve without changing the value of

the abscissa x^, and then tracing along this curve until we
reach a point whose abscissa is x^ -{- dx^, which must, by the

conditions of the question, be the point F. Now by the first

movement we, in f^y change y into y -\- ^y, and ^ into ^ -f- S^;,

thereby probably increasing or diminishing /], while by the

second we, in the new value oi*/^, change x^ into x^-\-dx^,

which reduces /i again to zero.

We see, then, that if we change y^^ into y^-\- Sy^, z^ into

•2'i+ ^-s*!, and x^ into x^ -\- dx^, the increment which will result

to f^ will be zero. We have then, to the first order,

{fy^y\ + {fz^^\ + (A+A/ +/. ^\dx, = o. (1 5)

This equation is true to the first order only, since the complete
increment which /^ Avould receive is absolutely zero, while we
have merely obtained that increment to the first order. But
we can obtain an equation true to the second order by merely

developing (15) to the second order, and equating this develop-
ment to zero.
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310. To employ (15) in the present case write

X=^ and
f„^f^-. (16)

J X J X

Then, observing that here y' ^=^ a and z'= a', we have, from

(15),

(I + af, + a'f^,yx,+f^,dy, -{-f,,6z,
= o. (17)

We also have

L, = V, dx, + h,Sy^ + H<5z, ^ o.

Substituting the values of F^, //„ //,, y' and z'
,
and clearing

fractions, we have

(l + ^^ + ^^^)^;ir, + ady^ + ^'(^^, = o.

Then substituting in the last equation the value of dx^ derived

from (17), clearing fractions, and equating severally to zero

the coefficients of 6y^ and dz^^ we have, after changing sign,

\
(18)

Multiplying the first equation by a\ the second by a, and sub-

tracting, we obtain

^X.-<n = 0.. (19)

But, by reduction, equations (18) become

///I
- ^' -\-fm^"

—
^^'fn =fm -a' -a {f^ - af^^,)

= o.

Hence, from (19), we see that /^,
= a and /^^,

= a'
;
and it is

clear that we can discuss the lower limit in a similar manner,
so that

/. = ^, /n = ^^ ^.0
= ^, Fu.^^'- (20)



SHORTEST CURVE IN SPACE. 3/1

Now in determining the four constants a, a\ b and b\ we
shall be concerned with ten unknown quantities, x^^ j/^, z^, x^,

y^, z^, a, a'
,
b and b' . But we have, in addition to the four

equations (20), the following six equations :

/i = ^-^1+ ^, -,
== a'x, + b', / =: o,

y^ = ax, + ^, z, — a'x, -\- b'
, i^o

= o
;

and it is evident, therefore, without going into the discussion

of any particular case, that these ten equations are sufficient

for the determination of all the quantities involved.

Now from (14) we have, for the upper hmit,

Udx-\-fydY^f,dZ^o,
or

i+/i"'+/.^' = o=i+«K'+«'Z'; (21)

and since we may regard V and Z' as belonging to any right
line drawn through D, and also lying in the tangent plane to

the upper limiting surface at D, the required curve must be

normal to any such line, and consequently to the tangent

plane. Therefore, since similar equations Avould hold for the

lower limit, we conclude that the required straight line must
be normal to the given surfaces.

If, instead of surfaces, the straight line is to have its ex-

tremities upon two curves, let the equations of the upper curve

be dy ^=^f'dx and dz = F'dx, Then, by reasoning like that in

Art. 69, we shall find

Sy^ =. {f -y\ dx, and Sz, = {F'
-

z'\ dx, ;

and recollecting that y = a, z^ = a\ we shall obtain, by sub-

stituting these values in the most general form of Z,
—

L^, the

equation i -|- a/' -|- a^F^ — o, together with a similar equation
for the lower limit, so that the line must be normal to the two

limiting curves.
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It is evident, however, that in these latter cases, in which

the limiting values of x are not fixed, the results would be

sometimes maxima and sometimes minima; and we must

therefore repeat the caution frequently given heretofore—
not to receive as final any results obtained by an examination

of the terms of the first order alone.

Problem XLIX.

311. It is required to determine the curve in free space down
which a particle, influenced by gravity alone, would descend from
one fixed point, curve, or surface to another fixedpoint, curve, or

surface hi a ininiimun time.

Assume the axis of x vertically downward
;
and if the par-

ticle be supposed to have an initial velocity at the upper

point, which is the lower limit of integration, let h' be the

height due to that velocity. Then the velocity at any point

will be \^2g{x -\- h'). Hence, in this case, we must minimize

the expression

Jx, Vx^h'
^ ^

Now varying y and z as before, transforming the terms ol the

first order until they assume the form

SU= A -
L,-^fJ^'Mdydx+£ySzdx, (2)

and then equating M and N severally to zero, we have

dx V{x-\-h'){i+y+z")

dx |/(^:+iy( I +/'+ /')

(3)
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r = ^'- (4)
^{x + //) (I +/-+ z'^) V{x+ /.') (I +/"+ ^")

* Now dividing the first of equations (4) by the second, we find

that-^ must be constant. This is sufficient to show that the

curve required must be a plane curve, and hence we know
that the solution must be a cycloid.

Thus we see that we can sometimes avoid the necessity of

integrating completely the equations M—o and iVr=o, by
showing that the problem can be reduced to one of two co-

ordinates
;
and indeed we could evidently have done the same

thing in the preceding problem. But when we come to con-

sider the terms of the second order we must evidently resume
three co-ordinates, because we now require that the primitive
curve shall be compared wnth all curves which can be derived

from it by infinitesimal changes in y, z, y' , z\ etc., some of

which may not be plane curves, and would be, therefore, ex-

cluded by the employment of two co-ordinates only. But if

we compare' the form of Fin this and the preceding problem,

observing that x -\- h' has no variation, and denote by 5 the

coefficient of dx under the integral sign in equation (11), Art.

307, it will at once appear that these terms must become

2Jxa

x-^ Sdx
'^0 \/x+ /

which must be also essentially positive, since \^x -f- h' is posi-
tive throughout U.

312. Now since we know that the required cycloid must
have the line joining its cusps parallel to the horizontal plane

xy, and itself be in a vertical plane, its general equation
need involve but five constants. For we have to consider

the three co-ordinates 'of one of the cusps, the angle which
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the line joining these cusps makes with the plane of xy, and,

lastly, the radius of the generating circle. If we suppose h

zero, and the cusps to lie in the plane of yz, these constants

will be reduced to four. But we have, as the most general

form of the terms at the limits,

L,-L,^ V,dx,
- V,dx, + h,dy^

-
h,dy,-\.H,dz,

- IIJz, = o;

so that it appears, as before, that if the limiting values of x be

fixed, we shall have just the requisite number of conditions

for the determination of the constants
;
and that if these limit-

ing values be not fixed, we must restrict dx^ and dx,. If k' be

not zero, it is at once determined by the initial velocity ;
but

we have only shown that the cycloid gives a minimum when

the limiting values of x are fixed.

3(3. Let us now consider briefly how many constants will

occur in the general solution of problems of this class, and

what are our means for determining them, as these are the

only points which need any additional general explanation.

Assume the equation U^=J^ V^^, where F is any function

of X, y, z, y, . . . . y^^", z, .... ^^). Then, proceeding in the

usual way, we obtain for the general solution the two differ-

ential equations M= o and N = o. Now M is of the order

2n in y, and ;/ + m in z, and N is of the order 27u in z, and

m -\-n in y. Differentiating N 2m times, and M n -\- in times,

we shall have, together withM and iV, 3;;^ + ^/ + 2 differential

equations ;
the highest differentials involved in any of these

equations bemg 2{in -f- 11) in j/, and yri -\- nin z. Now elimi-

nating z and its yn + 71 differential coefficients, we shall obtain

an equation in x and y only, and the differential coefficients of

y with respect to x. The order of this equation must be

2{m -\- n), and its complete integral must therefore involve

2{7n + n) arbitrary constants, which is the number which must

be contained by the general solution.
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Now if we examine the most general form of the limiting
terms L^

—
Z^, it will at once appear that, unless some re-

striction be imposed, there must be as many independent
terms as there are quantities dx^, dx^, dy^, dy^, Sy/, dy/, ....

<3>/^-i\ d^jo(^-i), d^„ (^^0, .... (^^,(^-1), (^ir/"^-i), the number
of which will be 2{m -^ n)-\-2, or merely 2{m -\- n), if the lim-

iting values of x be fixed, or if dx^^ and dx^ be restricted as

formerly. Moreover, it will appear, as before, that any con-

dition which causes one of these equations to disappear will

itself furnish a new equation of condition, so that the number
of limiting equations will still remain equal to that of the

arbitrary constants.

Nevertheless it is easy to see that the reasoning here em-

ployed may be subject to exceptions similar to those which

have been explained in the case of two co-ordinates
;
but these

will give the reader no serious difficulty.

3(4. We may now consider, as being somewhat connected

with our subject, the principle of least, or more properly mini-

mum action, particular cases of which have been already dis-

cussed.

Problem L.

A particle is to move in space from one fixedpoint to another,

its motion being controlled solely by a system of incessant forces.

Then x, y, and z being the co-ordinates of any point of its path,

ds an element of tins path, and v the velocity of the particle at the

end of any time t, it is required to show that the 7iature of this

path must be such as to render SU to the first order zero, where

Denoting by X, Y and Z, as usual, the aggregated com-

ponents of all the forces in the direction of the axes of ^, j.
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and z respectively, we shall assume the well-known equation
in mechanics,

V dv = -
div") = Xdx+ Ydy+ Zdz,

(i)

Now if we suppose the particle to be moving along the re-

quired path, the symbol d, as applied to any quantity, denotes

the change which that quantity undergoes when the indepen-
dent variable, which we may here assume to be x, receives an

infinitesimally small increment, the curve remaining unchanged.
But if we draw any derived curve, and suppose the particle

could pass from any point / on the primitive to some point P
indefinitely near/, but on the derived curve, then if we give
to the symbol d the meaning already explained, we may denote

by 8 the corresponding change which the various quantities

would undergo if the particle could pass from/ to P.

Now in passing from / to P, just as in passing along any
element of the primitive curve, we may assume that X, V,

and Z remain constant
;
and hence, denoting by ^^, v^ and v^

the components of v in the direction of x, y and z respectively,
if we add to x, y, or z any infinitesimal increment, the corre-

sponding change in ^—-, etc., would be X, Y, or Z multiplied

by those increments respectively, whether those increments

were added as differentials for the purpose of enabhng us to

pass from one point to another on the primitive curve, or as

variations for the purpose of enabling us to pass from any
point on the primitive curve to an adjacent point lying on
some derived curve.

But we have seen that any derived curve can be obtained

without varying x, and we shall therefore consider/ and Pas
having the same abscissa x. Hence, accents below denoting
differentiation with respect to /, and those above with respect
to X, and remembering that Y:=y^^ and Z —

z^^, (i) may be

written
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i S
iv") =v6v= Y6y+ Zdz = fjj+ ^,/.5'. (2)

But the last member of (2) equals

(x^7+ ^M^ - ky.^y^ + ^/^^.)- (3)

Now we have

2 ds^ dx^
, dy ,

dz^ 21212 / N

Then varying i)^ under the supposition that neither dt nor dx

undergoes any change from variations, we shall obtain

vSv=y^dy^^z^dz^. (5)

That this supposition may be made will appear if we re-

member that, in passing from p to P, v undergoes no change,
so that dx and dt for that element of the curve maintain to

each other whatever ratio they had before the curve was
varied. Of course if we divide the whole time / into equal

parts dt, the corresponding differentials of x cannot be sup-

posed to be equal among themselves
;
but this inequality can

in no way affect our problem.

Hence, admitting the validity of (5), equation (3) becomes

{yfy+ ^j^^)/
— "^ <^^,

and (2) may therefore be written

2vdv = d{7>')
=: {ySy+ z^6z)^. (6)

But since v — ---, we have v^ = ——. Hence (6) gives, after

clearing fractions,

d{vds) = d{yfy-\-zSz). (7)

But since the particle is to pass from one fixed point to

another, the derived curve must also pass through these
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points, and we are not to suppose the particle capable of any

displacement at either point, so that the variations of y and z

vanish a1 both these points. Moreover, although we have

really regarded t as the independent variable, we may inte-

grate (7) as though that variable were x. For d in (7) denotes

the change which y^dy-{-zfiz undergoes in the time dt, or

while the particle passes from a point whose abscissa is x to

one whose abscissa is x ^ dx\ so that it is the same thing
whether we suppose these changes to be summed up for the

time /j
—

t^ or through the distance x^
—

x^. Therefore, by

integration, (7) gives

= {y,^y + ^/^).
- {yfy+ ^M- = o. (s)

316, To guard against certain misconceptions, we observe,

first, that the reasoning here employed would not be applicable
if the particle were compelled by a system of forces to move

along a fixed material curve. For then, although equation (i)

would hold, equation (2) would not, because that portion of

X, Y and Z which arises from the normal pressure of the

curve upon the particle would vanish for any point P without

the curve
;
so that we could not say, as formerly, that, in pass-

ing from p to P, X, V, and Z would remain constant.

We observe, secondly, that although the principle just
established is commonly called that of least or minimum
action, the name is not warranted, at least by the preceding
demonstration. For our approximations were carried to the

first order only ;
so that we are merely able to say that the

required curve must be such as to render (^f/to the first order

zero. But we have already seen that the terms of the second

order in (^^ do not always become positive, but sometimes

vanish also, in which cases we inferred, although we did not

investigate the matter, that .those of the third order would not

likewise vanish, and that therefore d^ might have either sign
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at our pleasure, thus showing that U could be neither a maxi-

mum nor a minimum. It will be found, however, that the

terms of the second order vn dU never become negative, and
indeed it is generally conceded that the action can never, as

Lagrange erroneously supposed, become a maximum.

Section II.

case in which the variations are connected by
equations, differential or other.

Problem LI.

316. It is required to determine the nature of the lifie of min-

mum length which can be draivn between two fixedpoints or curves

on the surface of a sphere.

Here

U=.C" VT+7'"=-+7^ dx =/; Vdx
;

and taking the variation of U, and integrating in the usual

manner, we have

'^^» dx Vi+/'+ z" ^'^ dx Vi-\-y"+ z"

= hfiy,
- hfy, +HM -HM

+ r^MSydx+ f'NSzdx = o. (i)
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Now in this case the variations of y and z are not indepen-

dent, all derived curves which cannot be drawn upon the sur-

face of the given sphere being excluded from comparison with

the primitive. Nevertheless it is evident that the integrated
and the unintegrated parts of (^^must severally vanish. For

we may suppose each part to be expressed in terms contain-

ing one variation only, the other having been eliminated.

Hence we have

L,-L, = o, r\Mdy-\-N6z)dx^o, (2)

But we have from the sphere

x''+/-^z' = r\ ydy^zdz = 0, d^ = IlZ^»
(3)

Hence (2) may now be written

X" 1

^-? 1
'^"^^ =iy''y<^^ = °-

(4)

Whence it will at once appear that to maximize or minimize

U, M ' must vanish. Equating — M' to zero, we have

d y' d z' y
dx Vi+y+ z'' dx Vi+y+ z" z

so that we obtain

1 d---J-.= = id-—J--= .

(5)

317. Before proceeding, we shall find it necessary to

change the mdependent variable to s. It is evident that (5)

may be written

I ,dy
'

I ,dz ,^.

-d-^- =z~d --. (6)
y ds z ds
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Although the symbol d in (6) denotes change incident upon
changes in x, yet we were not originally bound to consider

two consecutive values of dx as absolutely equal, and we may
therefore suppose that these differentials were so taken as to

make those of s always equal. Hence, regarding ds as always

constant, multiplying by --, and denoting by accents differen-

tiation with respect to ^, (6) becomes

y

Now multiply both the numerator and denominator of the

first fraction by y' ,
and of the second by z'

,
and denote the

A C
resulting fractions by — and —

,
which are, of course, equal to

each other and to the members of (7). Hence the quantities

A, By C and D are in proportion, and therefore

A + C:B+ D::A : B::C'. Dwy" ly-z^' iz.

Hence either member of (7) equals

B-\-D yy+ zz' (8)

But from the equation of the sphere, and also the equation

x'"" -{-y -^ z''' — I, we have

xx'+ yy'+ zz' = o, x'x" rf- y'y"+ z'z" = o :

and therefore (8) becomes — ,
so that we have

X

X" y" z"

^ =
-J
=

-z' (9)
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Now because (9) is true we may evidently write the following
three equations :

xd"^)!
— yd^x = o, xd^^ — ^d^x =^ o, j/d^j2

—
zd'^y = o.

Integrating these equations by parts, we obtain

xdy — ydx = a'
^

xdz — zdx = b'
, ydz — zdy = c' . (10)

Multiplying the first of these equations by z, the second by
—

r, the third by x, and adding the products, we shall obtain

a'z — b'y + c'x — o. (11)

In this equation the constants are infinitesimal, but dividing

by one of them, as c'
,
the two resulting constants may have any

value we please, infinitesimal, finite, or infinite
;
and we may

write X -\- ay -\- bz ^ o, the equation of a plane passing through
the centre of the sphere. The required curve must, therefore,

be a great circle.

3t8. To determine the constants a and b, we have, if we

suppose the curve to connect two fixed points, the equations

-^i + ^7i+ ^-s",
3= o, x,-\-ay,-^bz,^o.

But suppose the curve is to connect two given curves, and
let the equations of the curve for the upper limit be

y=f{x)=f, z=zF{x) = F, or dy=zfdx, dz^F'dx. ^12)

Then we shall have, as in Art. 69,

^y. = {f' ~-y'\dx, and dz,={F' -z'\dx,, (13)

Also it is evident, as before, that L, and L, must severally
vanish, and

L,= V{i-^y''-\-z'\dx,
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Eliminating 8y^ and dz^ by means of (13), and reducing, we
obtain i -{- y^fl + z^ F^ = o, which shows that the great cir-

cle must cut the limiting curve at right angles ;
and a similar

result can evidently be obtained for any curve at the lower

limit.

If we suppose the limiting values of x only to be fixed, we
shall obtain for either limit, after having eliminated dz by (3),

zdy ~ ydz = o = — c' , Hence (li) becomes

a'z — b'y = o = z — a"y, or z — a"y,

where a" remains undetermined, as it should, it .being the tan-

gent of the inclination of the great circle to the plane of xy.
We conclude, therefore, that the great circle must be so drawn
that its intersection with the plane of xy shall always coin-

cide with the axis of x,

319. It will appear by reference that U has here the same

general form as in the first problem of this chapter ; and hence

if the limiting values of x be fixed, the terms of the second

order, as they at first arise, will be the same as in equation

(11), Art. 307, which may be written dU—-J Sdx. But

now the mode of eliminating Sz must be rendered exact to the

second order, and for this purpose we have

6z = ^Uy + l^S/=-y-6y-l+^Sy\
dy

-^^
2df

^
z

^
2z'

^'

which will at once appear if we remember that x has no vari-

ation, and that Sy and Sz are taken along any section of the

sphere at right angles to the axis of x. Substituting this value

of Sz, we shall evidently obtain, as the coefficient of Sy, M' ,
as

before, which must be equated to zero as formerly. But since

we must not reject the new term of the second order arising
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from the elimination of dz, we add it to those already in the

second, and the complete terms then become

When the limiting values of x, y and z are fixed, and the arc

joining the two fixed points is less than a semi-circumference,

the sign of these terms is undoubtedly positive, as we know
from other considerations that we have a minimum. Never-

theless the author is unable to present any satisfactory general
demonstration of the fact that these terms fulfil all the neces-

sary conditions for a minimum.

320. The method employed in the preceding problem is

not sufficiently general for all cases, since it is evident that the

connecting equation may, as when s is the independent vari-

able, be an unintegrable differential equation, which will not

enable us to express dz in terms involving dy only. In this case

we must adopt the method of Lagrange, with which the

reader is already partially familiar, and which we will now

briefly explain in a somewhat more general manner.

321. Suppose we seek to maximize or minimize the expres-

sion U = I^ Vdx, where V is any function of x, y, y\ . . . .

z, z\ . . . .; and suppose also that the equation f{x, y, z, /, z'
,

....)
— o— f \s always to hold. Then, because/ is always

zero, df must vanish
;
that is, we must have

fy^y+ fy'^y+ etc. +f,6z -\-A>Sz' + etc. = o. (i)

Then / being any quantity, constant or variable, we may write

/ Idfdx = o. Now vary U to the first order, equate SU to
t/Xq

zero, and transform by integration as usual. Then, in like
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manner, transform / Udfdx, and add the result to dU. Then

giving only the general form of the terms free from the inte-

gral sign, we shall have

6U= \Vy,+ lfy,
-

( F,.+ //,.)'+ etc. KJ.+ etc.

+{Vz'+ Ifz'
-

( V,.. + If,.?)'+ etc.
\
Sz + etc.

^-rWv^-lfy -
(F^ +//,-)'+ etc.] tfj

+ Wz^ Ifz
-

{Vz'+^/z'Y + etc.] ^^}d;t: = o, (2)

Now whatever be the value of /, the integrated and the

unintegrated parts oi ^U must severally vanish. Then if we
assume / so as to make the coefficients of either of the quan-
tities ^j/dx or S^dx vanish, the coefficient of the other must

vanish also. Thus we reduce (5^^ to such a form that, without

eliminating either Sj/ or ^^, we may, in the unintegrated part,

regard these quantities as if they were really independent, and

equate their coefficients severally to zero. But it is evident

that before we can obtain j/ and ^ as functions of x, we must

be able either to eliminate / or to determine it also as a func-

tion of X, y and s. This, however, can in general be accom-

plished, because, in addition to the differential equations ob-

tained by equating to zero the coefficients of 6y and Sz, we
now have the equation/= o.

322. The arbitrary constants which enter the general solu-

tion must evidently be determined by the conditions which

are to hold at the limits. Denoting the terms at the limits by
Zj — Zq, we may evidently in general equate these quantities

severally to zero. Then in Z,, for example, the value which
we have been obliged to assign to / will not usually cause the

coefficients of dx\, Sy^, 6y^\ Sz^, Sz^\ etc., to vanish severally.

Moreover, these variations are not independent, because the



386 CALCULUS OF VARLATIONS.

equation /= o is to hold among them; so that we cannot

equate these coefficients severally to zero.

We see, therefore, that although we shall have as many
equations at the limits as there are independent variations, a

general discussion of the number of the arbitrary constants

involved in the general solution, and of the number of the

ancillary equations for their determination, must become com-

plicated. Some results relative to these points have been

obtained by Prof. Jellett, and are given in Art. 59 of his work,
which results appear to be correct, although, as he himself

states, they are at variance with some obtained by Poisson.

It will here be sufficient to present Prof. Jellett's conclusions

without demonstration.

Let V be of the order n in y and m in ^, and let the con-

necting equation /= o be of the order n' in y and m' in z, the

limiting values of x only being fixed.

Then, first supposing n ^ n' and in > ;;/, the number of

constants involved in the general solution will be the greater
of the two quantities 2{m -\- n') and 2(;// -|- 71),

while the num-
ber of the independent variations remaining in L^

—
L^, whose

coefficients may be equated to zero, will be the same
;
so that

all the constants can in this case be determined
;
and the same

conclusion holds when in > in' and n < n'.

If we next suppose n < it' and in < in', the number of

constants involved in the general solution will in general be

2{m' -\- n'), and of these constants there may remain undeter-

mined any number not exceeding the lesser of the two quan-
tities 2{in'

—
in) and 2{n' — n).

323. The method of Lagrange is capable of extension to

any number of dependent variables. For example,, let V con-

tain jr, y, z, u, and any differential coefficients of y, z and u

with respect to x
;
and let the equations

fix, y, z, u, y', z', ii'
, etc.)

= o=f
and

F{x, y, z, u, y, z', ic', etc.) =0 = F
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always hold. Then both d/and (^/^must vanish; and assum-

ing /,
as another undetermined quantity, we have

r^lS/dx = o and r^LdEdx = o.

Adding- both these equations to dV, and transforming as usual,

the integrated and the unintegrated parts must severally van-

ish. Then we may write

r\MSy 4- N6:2 + Pdu) dx = 0\

and if we so assume / and
/^

as to cause any two of the quan-
tities M, N and P to vanish, the other must vanish also, after

which / and
/^

must as before be eliminated, or found as a

function of x, y, z and ?/, in order that we may obtain a com-

plete solution.

324. If we adopt the method of Lagrange in the preced-

ing problem, we shall obtain the equations

ly =r = o, Iz - = o,
' y' -0,
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Problem LII.

Let V be any function of x, y and z, and let these quantities be

also conjiected by the equation f{x, y, z)^^ o =:f Then it is re-

quired to maximize or 7iiininiize the expression

U^ r\Vi-\-y"+ z''dx,

Supposing y and z found as functions of x, we may evi-

dently then regard x, y and z as the co-ordinates of some

curve ;
so that we may consider as usual that we require a

curve whose co-ordinates shall be the values oi x, y and z in

the general solution, and which we may therefore call the re-

quired curve. Moreover, since the equation /=o may be

regarded as the equation of a surface, we may suppose that

the curve is required to lie upon this given surface.

Now let ds be an element of this required curve. Then
we may, as in the case of two co-ordinates, adopt s as the in-

dependent variable, considering x, y and z as functions of s,

which itself receives no variation. We must, however, in

this case, adopt the method of Lagrange for three dependent
variables. For, since s is to be the independent variable, x, y
and z, besides satisfying the explicit equation /= o, must also

satisfy the unintegrable differential equation

dx"" . dy'' dz^ „

326. Now transforming to s, we have
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(2)

dU = Z\ ds^
—

V^ ds^ -[- / (^a;^-^+ "^y^y+ ^2 ^^) ds — O,

j(''V {x'dx' + ^'^j/' + ^'(^^0 ds = o,

I/Sq

where accents above denote differentiation with respect to s,

and hteral sufhxes partial differentiation as hitherto. Then,

proceeding as usual, we obtain

^^x+ IJx - {Ix')'
= O - 7;,+ IJ, - Ix"- X'l\

""^y+ ^Jy
— Wy ^o = Vy-\- IJy

-
ly"

-
y'l',

>

'Vz + /./.
-

(i^'y
= =

2^. + Kfz
- 1^" - ^'i'-

.

(3)

Multiplying these equations by x', y' and z' respectively, and

adding the products employing the equations

fxx'-\-fyy'^f,z'^f = o, x'^+y'^ + z'^=ir

v^ x'+ Vyy' + v^ z' = v\ x'x" + y'y''' + z'z" =o\ (4)

lxx'-\-lyy -^hz' =l\
'

^

we have
v' — I' = and l=v-{-a, (5)

327. Before proceeding, we must determine the constant

a, and this will lead us to examine the terms at the hmits.

These terms are

v^ ds,
—

V, ds, -\- l,{x'dx -\-ySy+ z'Sz\

- IXx'dx +y'Sy+ z'S^\ = o. (6)

Now if the required curve is to connect two fixed points,
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we shall have, by reasoning like that employed in Arts. 276
and 2"]"], for either limit,

Sx = —
x'ds^ (Sj/

= — yds, and d^ =: — z'ds, (7)

Kence, substituting these values in (6), and observing the

second equation (i), we have

{y
—

l)^ds^
—

{y
—

l),ds^
— 0,

so that

v^=^ L
*

and I= v.

But if the required curve is to connect two fixed curves,

let the equations for the fixed curve at the upper limit be

dy-=.pdx and dz=^qdx. Then, by reasoning precisely like

that of Art. 278, we have

^y. +y^ds, = pSpx^+ x^ds^, )

\ (8)

<^^j 4- z^ds^ = ^1(^-^1 + x^'ds^. )

Substituting in L^ the values of Sy^ and dz^ found from (8), we
have, omitting sufhxes,

V ds -{- Ix'dx -j- ly\p Sx -\- px'ds — y'ds)

-\- lz\q 6x -\- qx'ds
—

z'ds) = o. (9)

But ds^ and dx^ are entirely independent, so that, equating
their coefficients severally to zero, we have

V + ly'x'p
— ly+ Iz'x'q

— Iz"" = o, )

(10)

lx'^ly'p^lz'q=o.)

Multiplying the second of these equations by^;ir',
and subtract-

ing from the first, observing the second of equations (i), we
find, as before, that

/,
—

%\ and /— v.
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Now, supposing /^ or v^ not to vanish, divide the second of

equations (lo) by /j^/, and we shall obtain

which shows that the required curve must cut the fixed curve

at right angles ;
and a similar result can evidently be obtained

for another fixed curve at the lower limit.

328. Let us now return to the general solution.

Putting V for / in (3), we have

'^x+ IJx
— 'VX" — X'v'=^ O,

^

'^y+ ^Jy
—

"^y"
—7V= o,

Vz + IJz
— 'vz" — z'v' — o.

(II)

Let A, B and C be the angles made with the co-ordinate

planes by the plane of that normal section which contains at

any point the tangent to the required curve. Then, because

the plane contains the normal to the surface, and also the tan-

gent to the required curve, we must have the equations

fx cos A -\-fy cos B -\-fz cos C = oA

\ (12)
x^ cos A -{-y cos B -\- z' cos C — o.)

Hence, multiplying the first of equations (11) by cos^, the

second by cos B, the third by cos C, and adding the products,
we have

Vx COS A -j- I'y
COS B -\-Vz COS C

— V ix" COS A ^ y" COS B -{- 2" COS C) = o. (13)

Now let A^, B^ and C^ be the angles which r^, the radius ot

curvature ot the required curve, makes with the co-ordinate

axes. Then it is known that
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COS A^
— —

r^x" , cosB^ = — r^y\ cos C,
= —

r^z", (14)

Equation (13) may therefore be written

Vx COS A -|- %>y
cos B-\-Vz cos C

= (cos A cos A^ -\- cos B cos B^ -\- cos 6" cos C^). (i 5)
^/

Next let be the angle which the osculating plane to the

curve makes with the plane of the aforesaid normal sections.

Then it is known that

cos A cos A
^ -\- cos B cos B^-\- cos C cos C^

= sin 0. (16)

Also, r^^ being the radius of curvature of this normal section,

we have, by Meunier's Theorem,

sm' 0=1 '—. (17)

Equation (15) may therefore be written under any one of these

three forms :

-^ ,
— -„- (^a; COSy4 + Vy COS B+ ^^COS C)'\

r, r,r v

sm
r.

{Vsc COSA -{- Vy COS B -\- VzCOS C),

tan I . .
, „ , ^.= [Vx COSA -{- Vy cos B + "^'^cos 6

).

[ (18)

The first two equations are evident enough, but to obtam the

third we have

r; „ sm o
-L^=zCOS'o=- —'
r,/ tan o
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Hence

or

Whence

^;:
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330. We may, before considering- particular cases, deduce

another property of this class of curves.

Let d be a fixed point and TT' a fixed curve, both being
situated upon a given surface, and let the arc TT' be taken

indefinitely small; then draw two curves OT smd 0T\ each

having the property of maximizing or minimizing the expres-

sion U— I vds, when the limits are fixed. Then, since each

curve renders U a maximum or a minimum, they must both

satisfy the same differential equations ;
and unless we suppose

that there could be two solutions, (9rand OT' must be indefi-

nitely near at each point, so that OT' could be obtained by

varying OT, and also the upper limiting value of x. Therefore

OT'— (9r must equal that portion only of (^t/ which is with-

out the integral sign
—that is, since the lower limit remains

fixed, and /^
= v^
—must equal

v^ ds+ v^ x/dx, -4- V, yl^y^ + z\ z^'Sz^. (19)

Denote TT' by dS. Then we must have

dz, dz
dz, = -77T- dS, — —r ds,.

'

dS^ ds^
^

Substituting these values in (19), we have

OT' -OT=v,-v, {x"-\-y" + z'\ ds.
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But denoting by t the angle OT'T, (20) gives

OT- OT = v, cos tdS, (21)

331. From the second of equations (18) may be deduced
two others, which will sometimes be found useful.

Let A
J J, B^^ and C^^ be the angles made by the osculating

plane with the co-ordinate planes. Then we have

cos A^^ = r, {z'y"
-

y'z"), cos B^^
=

r^ {x'z" - ^'x"\ )

[ (22)
cos C,,

=
r, {y'x"

-
x'y). )

Now let the equation of the given surface be

ds = Zxdx -\- Zy dy. (23)

Then we have

Substituting this value in the second of equations (18), and

then eliminating either x" or y" by the equation

x'x''-^yy'^z'z"=o,

we have either of the following forms :

x"-{-z^z" =

^ ""^ ^
{v:c cos A-\-VyCOS>B-\- 2;;jCOs C)y,

y"-^ZyZ- =
(25)

-^--tl^:^
{v^ cosA + Vy cos B + v^, cos C)x' .
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332. We may now proceed to consider some particular
cases of the foregoing theory.

Problem LIII.

It is required to find the line of minimum length which can be

drawn upon a given surface between two fixedpoints or two fixed
curves situated upon the same surface.

This problem is the simplest case of the preceding, to

which it may be reduced by writing v =^ i, v^ =^ o, Vy ^=^ o and

Vz = o. Whence the second members of equations (i8) must

vanish, and the first of those equations will give r^
=

r^^, which

makes o vanish.

We see, therefore, that curves of this class, or, as they are

generally termed, geodesic or geodetic curves, must be such

that their osculating plane at any point shall be perpendicular
to the given surface at that point.

Now, in Prob. LI., since the radius of every normal sec-

tion of a sphere is the radius of the sphere itself, it at once

appears that every geodesic curve drawn on its surface must

be the arc of a great circle.

We shall not, however, enter upon an extended discussion

of geodesic lines, but shall give the chief points concerning

them, following, as we have done since the beginning of Prob.

LIL, the guidance mainly of Prof. Jellett.

333. The equation of a geodesic line is deducible in sev-

eral ways.
1st. It is evident that all the reasoning in Prob. LI. would

hold if the equation of the given surface were f— o, except
that X, y and z in the denominators of the equations would be

replaced hy fx, fj and fz respectively, the equations remain-

ing otherwise unaltered. This would hold as far as equation

(9), which would become

X y z

fx fy fz
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Hence we may evidently write the equations

fxdy — fyd'^x = o, /p d'^ — f^d'^x = o, )

fyd'^
- /,dy = O.

)

2nd. If the equation of the given surface be

d^ =1 Zxdx -\- Zy dy,

then equations (25) give

x" + z^. z" = o, /'+ Zy z" = o. (2)

3rd. Or, because <? = o, we have, from (24),

z, {/z'^- z'y") + Zy {z'x"
-

x'z") = x'y" -y'x", (3)

But we have the equations

dz = Zx dx -\- Zy dy,

d^'z = Zxx dx" 4- 2Zxy dxdy-\- Zyy dy"" + Sydy.

Eliminating dz and d^z in (3) by the values just given, it becomes

(I ~T" ^x ~| ^y ) yxx ~r \^y ^xyx) \^xx \ '^^xyyx ~r ^yyyxx) =^ 0>

which, together with the equation dz — Zxdx — Zydy =z o, rep-

resent the geodesic line.

334. As another property connected with these lines, we

may notice that equation (21), Art. 330, will now become

OT^ — OT— cos t dS. Now it is easily shown b}^ the differ-

ential calculus that if the lines OT and OT' were right lines,

the point O and the curve TT' being in free space, the above

formula would hold. Therefore we infer that, so far as their



39^ CALCULUS OF VARIATIONS.

change of length is concerned, we may, in the application of

infinitesimals, regard all geodesic lines as right lines.

But we must here note a difference between the right line

and most other geodesic lines. For while the former is always
the line of minimum length between two fixed points, the lat-

ter are not in every case. For on a given surface suppose
two indefinitely near geodesic lines to be drawn : these lines

will in general intersect at some point. Here, then, we would

haye between two points two indefinitely near geodesic curves

satisfying the same differential equations, so that we would

naturally infer, as in the case of two co-ordinates only, that

the geodesic line ceases to be a minimum when the integral

U ranges from one intersection to the other. This remark,

although undoubtedly true, can only be called an inference,

as we cannot apply Jacobi's Theorem with any success to this

class of problems ;
still the principle in question is well illus-

trated in the case of the sphere, where the two geodesic curves

will be two indefinitely near semi-circumferences, having of

course the same length.

Again, we have already seen that the curve which renders

vds di maximum or a minimum must, if one or both ex-

tremities are to be confined to fixed curves, cut its limiting
curve at right angles, and hence this must be true also of geo-
desic curves. If, therefore, from a fixed point upon a given
surface geodesic curves of a given length be drawn in every
direction, and the extremities, which are free, be joined by a

curve, this curve must be of such a nature that at any point it

may be at right angles to the geodesic curve drawn from the

common point to that point.

335. We close the discussion of this subject by the con-

sideration of one more particular geodesic curve, the discus-

sion of which is not without interest, and appears to be due
to Joachimstal.
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Problem LIV.

// is required to determine the nature of the geodesic curve

drawn upon the surface of a spheroid.

Let the equation of the surface be

^+¥ + J^='' W
Hence equations (2), Art. 333, become

. :." = ^-, f=y^. (2)a z z

Now let P denote the perpendicular from the centre upon
the tangent plane to the surface at any point of the required

curve, and D the semi-diameter of the spheroid drawn parallel

to the tangent of the required curve through the same point.

Then it is known that

and
P' a'

'^ b'^ b'
^^

D'~ a'~^ b''^ b'

~ "'''

(3)

Now differentiating v, and putting for x^' and /' their values

from (2), we have

,
2b' Ixx'

,
yy' , zz\ „ bWz"

But if we differentiate (i) twice, and in the result substitute

for x" and y'^ their values from (2), observing also the values

of u and v, we shall obtain

bhiz"v= --.
(5)
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Dividing (4) by (5), we have

v' u'— =
,

udv+ vdu = o, {6\
V u ^ ^

whence uv is a constant, say c.

It appears, therefore, from the first and third members of

equations (3) that the geodesic curve must be of such a nature

as will always render PD a constant, say c'"^,

336. We can also deduce another property of this curve.

Let r be the radius of curvature. Then it is well known that

for any curve in space we have

7 = ^'"+/"+^'". (7)

Substituting in this equation for x""^ and y""^ their values from

(2), and observing also the value of u, we have

But from (5) we have

so that
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drawn from the centre of the spheroid to its tangent plane
which touches the geodesic curve.

337. We now pass to another problem which is of con-

siderable interest, following, as before, the guidance mainly of

Prof. Jellett.

Problem LV.

A particle is coinpelled to move in a groove upon a given sur-

face from one fixed point to another^ being urged by a system

offorces which always re?ider Xdx -\- Ydy -\- Zdz a perfect dif-

ferential. Then it is required to determine the nature of its path
in order that it may move from the first point to the second in a

minimtun ti^ne.

Let t denote the time, V the tangential velocity, and ds an

element of the required path. Then it is evident that we are

to determine the curve which will minimize the expression

But we have, by a well-known principle of mechanics,

V = 2f{Xdx+ Ydy -\-Zdz)= f{x, y, z).

Hence we conclude that the present problem is merely an-

other case of Prob. LI I., to which it may be reduced by writ-

ing -p=^.
But before we can employ any of the formulae obtained in

that problem, we must also be able to determine the values of

the partial differential coefficients of v with respect to x, y and

8* Now we have

-d{V'):=VdV=Xdx-\-Ydy^Zdz, (i)
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where the differentiation is total. But since F, and conse-

quently F^ is a function of x, y and z, the partial differential

of V^ with respect to any of these variables, as x, is the

change which it would undergo if we could change x into

X -\- dx, the other variables remaining unaltered, and this

change is given in (i) by making dy and dz zero. Hence, de-

noting partial differential coefficients, as before, by literal

suffixes, we have

-{V%= vv, = x,

VVy = Y, VV,= Z.}

(2)

Now putting for v its value— ,
we find
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point, and O the angle which R makes with the perpendicular
to the plane of this normal section erected at the aforesaid

point. Then we know that

-S^cos'^^, I-—,==sm^, —-—^——~, (5)

Now the aforesaid perpendicular to the plane of the normal

section makes angles with the co-ordinate planes whose co-

sines are numerically equal to cos^, cosB and cos C. Hence
we see that

(XcosA + Fcos ^+ Zcos Cy = R' cos' 0, (6)

Therefore we have

sin'^ R'cos'O V'sm^o

F'sin^

= R'qo^'0.

= R cos O.

(7)

339. It is evident that the members of the last equation

may, so far as the preceding equations are concerned, have

contrary signs, and we must therefore next justify our assump-
tion that they should be taken alike.

Now the pressure upon the curve in any direction is equal
to the sum of the components, in that direction, of the result-

ant and of the centrifugal force. Moreover, the total force at

any point may be resolved into three : the first normal to the

surface, which is destroyed by the surface ;
the second along

the tangent to the required curve, which tends to produce
acceleration of motion

;
and the third in the direction of that

perpendicular which has been previously mentioned, and thic

component would, if the particle were constrained to move in

F' .

a groove, cause pressure against its side. But —y is the cen-
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trifugal force, and o is the complement of the angle made by r^

with the aforesaid perpendicular ;
so that the members of the

last equation equal numerically the respective components of

the centrifugal force and the resultant in the direction of this

perpendicular. Now if the components have contrary signs,

then, since the pressure upon the side of the groove must

equal their sum, it must become zero. But in this case no

groove would be required ; the motion of the particle upon
the surface being controlled solely by the given system of

forces. But in accordance with the principle of minimum

action, the path of the particle would, under the present sup-

position, be that of minimum action upon the given surface

with the given forces
;
which is not the problem we wish now

to discuss. The last of equations (7) is therefore correctly
written for this case.

34-0. We see, then, from the last of equations (7), that the

required curve must be such as to make the component of

the centrifugal force perpendicular to the plane of that nor-

mal section which contains the tangent to the required curve

equal to the component of the resultant in the same direction.

Again, we have

Y^---^Rqq^0^2Rqo^G\ (8)

which equation shows that if a particle urged by a system of

forces move on a given surface in a groove of such a form as

to render the time of passing from one fixed point to another

a minimum, the pressure upon the side of the groove, when
the particle is in motion, will be double what it would be if

the particle were at that point held in a state of rest and still

urged by the same forces.

Again, if the resultant should lie in the plane of the afore-

said normal section, cos O will vanish, and from (6) we shall

have
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Xq,o^A^Yqo^B-\-Zqo^C—q,

which, in (4), gives

= o.

Therefore the curve in this case must be a geodesic curve.

341. The following problem is also from the work of Prof.

Jellett, and its complete solution appears to be due to him,

although the problem itself had been previously discussed by

Delaunay.

Problem LVI.

// is required to determijie the nature of the curve of umiiniuni

length which can be drawn between two fixedpoints in free space,

the radius of curvature of the curve being always an assigned

constant.

Let ds be an element of the required curve, and r the

radius of curvature, which is a constant. Then, adopt-

ing here also the arc as the independent variable, we are

to determine the curve which will minimize the expression

U — I ^ds. We have also, in order that we may be able to

employ the method of Lagrange, the two additional equations

:c'- +y^+ y^ = I, x'" +/'' + ^'" = ~ = R\
(i)

Therefore, since the variation of W can give only the terms

ds^
—

ds^, it is easy to see that by following the method of

Lagrange, / and
/^ being two undetermined quantities, we

shall obtain the equations

{/,x")"
-

{/x'Y = o, {lyr - W)' = o. )

{i/r - (&')'
= o. )
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Whence, by integration,

(l^x")' -Ix' = a^ x"i; + I/" - Ix',

{lyy - ly'
- b = y"i; + ly" - ly,

{i/y -iz' ^ c ^ z"i; + i^z'"
- iz'.

(3)

Eliminating / between the first and second of these equations,
we obtain

{^y'jc"
-

x'y") i; + {y'x'"
-

x'y'") /,
= ay'

- bx'.

This equation is immediately integrable, giving

I
J {/x" — x'y") = ay — bx -\- f. (4)

In like manner, eliminating / between the third and first, and

then between the second and third of these equations, and in-

tegrating the tw^o resulting equations, we have

l^ {x'z'
—

z'x") =^ ex — az +/,, )

\ (5)

342. Before proceeding further we must consider the

mode of determining the constants in (4) and (5), and we begin

by determining /^
and /. For this purpose, multiply the first

of equations (3) by x'\ the second by y", the third by z", and

add the products, observing that equations (i) hold, and that

hence

jc'x" +yy + z'z" = o and x"x'" +yy + z"z'" = o. (6)

Then we have

i^v/ = «y' + ^y' + r.--, R^/^^ax' + by + cz' + o-, (7)

Differentiating the first of equations (6), and transposing, we
have

x'x'" +yy + z'z'" = -
{x"' +y'' + z'")

= - r\ (8)
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Now multiply the first of equations (3) by x'
,
the second by

y, the third by z\ and add the products, observing the first

of equations (i), and also equation (8). Then we obtain

l^ - RH^-ax' - by'
- cz'. (9)

Hence, by the second of equations (7), we have

l=.g-2RH, (10)

343. We must next consider the terms at the limits.

Giving merely their general form, these are :

Z = ^i-+ 1
Ix' - (I/')' \dx-^\ly'- {lyy \ 6y -f

^

\
Iz' - {Iz")' \

dz

j^l^S^:c"Sx'-^y"dy'^z"Sz'\^o. (11)

Now suppose the extremities of the required curve to be

fixed, but the extreme tangents to be wholly unrestricted.

Then it is evident, first of all, that L^ and L^ must severally
vanish.

Now consider Z,, and take first those terms only which

contain ds^, Sx^, dj/, and Sz^. Then, because the extreme

points are fixed, we shall have, as usual,

^x^
— —

x/ds^, Sy^ = —
y/ds^, dz^ = —

z/ds^, (12)

which being substituted in that part of Zj, having first written

will give, by employing the first of equations (i) and (6), and

also equation (8),

(i-/+R'/Xds,. (13)

Now it is evident that we could, without restricting the

extreme tangents, so vary the arc as to produce no change in

its length, in which case ds^ would vanish, and the remaining
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part of L^ would then vanish also. Hence we see that the

two parts of L^ are independent, and we have

L,ix"dx' -\-/dy' + z''dz\ = o. (14)

As this equation can be satisfied by making either factor zero,

let us suppose the second to vanish. Then, although Sx/, (5y/

and dz/ zltq not independent, we have, from the first of equa-

tions (i),

x'dx'+/dy+ z'dj2' = 0; (15)

and if, by this equation, we ehminate any one of the varia-

tions, as ^z/, the two remaining variations may be regarded as

independent, and their coefficients be equated severally to

zero.

Now in the second factor of (14) first eliminate (^^/, and

equate to zero the coefficients of Sx/ and dj// ;
then eliminate

(5j//, and equate to zero those oi^x/ and <^z/. Then we shall ob-

tain

i^W - x'z"\ = o, {s'/' -y'B"), = o, {x'f -y'x"\ = o. (i6)

If now we square these equations and add them, and then to

the sum add the square of the first of equations (6), we shall

obtain a result which may be written

(^"+/"+o. (^"+y^+o, = ^^ (17)

the last member following from equations (i). This would
make the radms of curvature infinite at the upper limit; and
as it is to have a constant value throughout [/, the required
curve would become a right line. But if we reject this solu-

tion and require that the radius of curvature shall have a con-

stant finite value, the- second factor of (14) cannot vanish, and

/,, must vanish.

Now since the coefficient of ds^ in (13) must also vanish, we
see that /, must become equal to unity. These values make ^
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in equation (10) also unity, and the second of equations (7) be-

comes

l^FJ^ax'^by' -\-cz'^\, (18)

344. rt is evident that we can treat L^ in a similar man-

ner, and shall obtain like results
;
so that we have

^/i==o. ^,0
= 0, /,

=
1, /o==i. (19)

Now since the position of the origin is in our power, assume

it at the lower limit. Then, since x^, y^ and z^ must vanish,

we see at once from equations (4) and (5) that/,/ and/^
must severally vanish. Then, neglecting / / and /^, multi-

ply equations (4) and (5) by z'
, y' and x' respectively, and add

the products. Then we shall find

{ay
—

bx)z' -\- {ex — az)/ -j- (bz — cy)x' = o

= a{yz'
-

zy') + b{zx'
-

xz') + c{xy'
-

yx'). (20)

To integrate this equation, put zrj ior y, and xv ior z. Then

(20) becomes
du dv

ail — b av — c

so that, by integration,

l{au — b)
= l{av

—
c)-\- c^=. l{av

—
c) -\- Ic^^

=
Ic^fyCiv

—
c).

Now putting for u and v their values, removing the logarith-

mic sign, and clearing fractions, we have

ay — bx = c"{az — ex), (2ij

which, being an equation of the first degree between three

variables, is the equation of a plane, and, containmg no con-

stant term, the plane passes through the origin. Now the
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circle is the only plane curve of constant finite curvature, and

this must therefore constitute the solution required.

345« But it is easy to see that the solution just obtained

cannot always be applicable. For suppose the assigned value

of r to be less than one half the line AB, A and B being the

two fixed points. Then the circle whose radius is r cannot

pass through both points, so that we are led to expect that if

there can be any solution in such a case, it must be discon-

tinuous.

Now as no boundary presents itself along which the varia-

tions of X, y and z are subject to any other restrictions than

those which are imposed by equations (i), we infer that the

discontinuous solution can consist only of some combination

of arcs which satisfy equations (2), and consequently equations

(3), which may be regarded as fundamental. Still it is evi-

dent that we may, *as usual in cases of discontinuity, suppose

a, b and c to have each different values for the different points

of the discontinuous solution.

But in the present case these constants cannot change
their values. For let x^, y^ and z^ be the co-ordinates of the

point in which two of the arcs which make up the discontinu-

ous solution meet. Then the part of ^^ without the integral

sign corresponding to this point, considered as being on the

first arc, will involve only dx^, dy^, Sz^, dx^\ dy^ and dz^\ For

it is only necessary to add the increment ds to the extreme

limits s^ and s^, as the only reason why such increments are

required is that we may obtain the privilege of varying the

arc in the most general manner, which would require an in-

crease or decrease in its length as a whole. Now the coeffi-

cients of 6x^, dy^ and dz^ are the first members respectively of

equations (3), with contrary signs; so that, denoting this part
of dUhy Z2, we have

L,=.- adx, - bdy,
-

cSz,+ l^lx"dx' + y"Sy'+ z"dz'\. (22)
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If now we denote by x^, y^ and z^ the co-ordinates of the same

points considered as being upon the second arc, we shall have
at that point, as in the case of two co-ordinates, the terms

L^ — Zg, Z3 having the same form as L^. Hence these terms
will not vanish unless a, b and c have the same values for

each arc.

346. It appears, then, that the solution must consist of

some combination of circular arcs, all having the radius r,

and situated in the same plane. But
l^
must vanish at the ex-

treme limits
;
and we see from (22). that to make L^ — L^ vanish,

we must also make
/^^

and
l^^ severally vanish, or must have

^/ = -^V> 7/= /a'. ^/^-S"/, /,,
=

/,3. (23)

We see, also, from (18), that when the first three of equa-
tions (23) are satisfied, the last will be satisfied also

;
so that

we infer that the arcs are also to be so placed as to have a

common tangent at their point of meeting, unless, indeed, we
can make

l^^
and

l^^
vanish without such a construction.

Now since a, b and c are unchangeable throughout the

integral, (4) and (5), Avhich are derived from the fundamental

equations (3), must also hold, as must equation (18); and as

the arcs must lie in one plane, we need no longer employ three

co-ordinates. Assuming, therefore, the plane of the arcs as

that of xy, make z and its differentials zero. Then, because

l^
must vanish at both extreme limits, while x^ = o and y^ = o,

it is clear that/, /, /^ and c must vanish, so that equations (4),

(5) and (18) become respectively

l^iy'x"
-

x'y") = ay - bx, l^
= r\i -\- ax' + by'), (24)

34-7, It appears, then, that arcs of the same circle, so

joined as to have a common tangent, will give at least one

solution of the problem, provided equations (24) are satisfied

throughout the entire range of the integration ;
and this point

we next proceed to consider.
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"Let A and B be the two fixed points, and suppose we take

three arcs, A CD, DEF and FGB
; and moreover, since the ori-

gin only is fixed, it being at A, let the axis of x take the direc-

tion AB.
E ^

B

Now taking first the arc A CD, its general equation may be
written

(x~hyj^{y-kf=r'- (25)

where h and k are the co-ordinates of the centre
;
and Ave shall

suppose X and y to be so estimated as to render these co-

ordinates positive. Differentiating (25), we have

{x - h)x' + (7
-

k)y' = o. (26)

Substituting from (26) in the first of equations (i), we easily
find

^' =±{y- k)R, y =^:{x- k)R. (27)

Now if we suppose x and s to increase together, x' is always
positive ;

and y ~ k being negative, we must take the nega-
tive sign. But the arc being below x, y' will be positive or
negative according as x - h is positive or negative; so that
for It we take the positive sign.We therefore have for this arc

x'-^- R{y _ k), / = R{x - h\ \

X" =.-Ry'^_ T^Y^r ~h\ y" =: Rx' = _ R\y _ k\ )

^^^^

Substituting these values in equations (24), they become

-
Rl^ ^ay~ bx, l^

= r'\i+a{y~ k)R+ b{x - h)R}. (29)
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Substituting in the first of these equations the value of
l^
from

the second, we obtain

r -\- ak — bh ^^ o. (30)

Now consider the arc DBF, and let H and K be the co-

ordinates of its centre. Then, proceeding as before, we shall

find that we must now reverse the signs of ^ and y, which will

leave those of x^^ and y unchanged, and equations (24) will

become

ie/,
= aj- dx, /^

= r'\i+ a{y - K) R - b{x - H)R\,

Whence we obtain, as before,

r-aK+bH= o. (31)

But since the arcs have the same radius, and a common tan-

gent at D, we must have K =z — k] so that (30) and (31) give

b{h -\- H) — o, an impossible equation unless b vanish. Under
this supposition, the second of equations (24) becomes

l,^r'{l-{-ax'). (32)

But x\ being always positive, has the same value at D as at H,
and therefore, since

/^
must vanish at the latter point, it will

vanish at the former also.

If, on the other hand, we had required for the ^ltcACB the

conditions which would cause
/,

to vanish at D, as well as at

A, we would have found it necessary to make b vanish, be-

cause, while the value of x' is the same at both points, those

of y are numerically equal, but have contrary signs, and

therefore the second of equations (24) could not otherwise
be satisfied. Then equations (30) and (31) would become

r-\-ak = and r — aK= o, so that K= —
/b, a.s before.

It appears, moreover, from (32), that if
/^
vanish at A and

D, it will also vanish at F; and that if we had taken any num-
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ber of arcs, instead of three, /^
would vanish at each point of

junction.

348. We see, then, that the proposed system of arcs not

only gives a solution which satisfies equations (23), but it is

also that which is necessary in order that
/^ may vanish at

each point at which discontinuity occurs, so that we have no

reason to expect any other solution.

But as we may take as many arcs as we please, all having
the assigned radius, it is evident that we can make the system
differ practically in no respect from a right line, which was a

former solution.

349, We have thus far supposed that the curve is to be

drawn between two fixed points, but let us next require its

extremities to be confined to two surfaces whose equations
are v ^ o and F= o, z* and V being functions of x^ y and z

only. Then, considering the upper limit, we see that Z, be-

comes, by the aid of (3),

L^-= ds- aSx- bSy- cdz,-\- l^,{^"dx'-\-y'dy-\-z''dz'),=^ o; (33)

and since
/^^ vanishes, we have

Zj = ds^
— aSx^ — bSy^

—
cSz^ = o. (34)

Now let X, + [_Sx,\ y^ + \6y;\ and z, + [dz;\ be the co-

ordinates of the point in w^hich the required curve, after

having been varied, meets the surface. Then we have, omit-

ing the suffix i,

v,iSx-\ + Vy[dy-] + v,[_Sz-]
= O. (35)

But we have in this case

[dx] =dx + x'ds, [(5>]
= 6> + yds, {Szl = dz-\-z' ds ;

30 that (35) becomes

{v^dx + Vy Sy + 7'^ dz\ + {y^ x' J^Vyy' + v^ z'\ ds, = O. (36)
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Substituting the value of ds^ from (34), we obtain

+ V^y + b {vxx'+ Vyf+ v^ ^OK^Ji

+ S^^ -\-ciyxx'+ e/^y+ v^ z')\fiz,
= o. (37)

We may now regard Sx^, dy^ and Sz^ as independent, and

may therefore equate their coefficients severally to zero. Per-

forming this operation, we easily deduce

Vx

a c
(38)

and a similar equation in V evidently holds for the lower limit.

Now from equations (4) and (5), since
/^
vanishes at both lim-

its, and /, fj and f^^ are zero, we have

ay^
—

bx^ = o,

cx^
—

az^ = o,

dz,
—

cy, = o.

ay,
—

bx, = o, 1

ex,
—

az, — o

bz,
—

^fo
= o- J

(39)

Whence, by subtraction, we deduce

X. — X^

Therefore, from (38), we obtain

i—^—] =
(

^^
]
=

(
^^

] >

(40)

(41)

and a similar equation in Ffor the lower limit.

These equations show that the straight line joining the ex-

tremities of the arc must be normal to the two given surfaces.
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350. We have hitherto supposed the extreme tangents of

the required curve to be wholly unrestricted
;
but if we re-

quire these tangents to have certain assigned directions, it is

evident that the preceding figure cannot always give the gen-
eral solution of the problem, since these tangents might be so

assigned as not to lie in the same plane.

It is shown in the following manner by Prof. Todhunter, in

his History of Variations, Art. 156, that the solution in such

cases will sometimes be a helix. The discontinuous solution

will be found in Art. 154.

Since dx'
, Sy' and dz' are zero at both limits, it is no longer

certain that
/^

will vanish at either limit. Let us suppose,

however, that the conditions relative to the limits are such

that in equations (4) and (5), a, b,f^ and f^^ vanish. Then the

second of equations (7) becomes

RH, = cz'-irg. (42)

i\lso, the terms at the upper limit will now become

Zj = ds^
—

cSz^ = o
;

and the extremities of the curve being fixed, dz^ = —
z/ds^ ;

so

that we have

I + cz/ = o. (43)

But Z, also gives rise to equation (13), so that

XV, - /,)
= «,'.

Hence we see from (42) that^= /^ and from (10) that
Z^,

van.

ishes, and then from (13) that /^
= i =z o-; so that (42) becomes

.

'

/^
= rXi+czy (44>

Now assume x = h cos v, y ^^ h sin v, and z = kv. Then
we easily obtain the following equations:
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ds- _ \/lf^^, x' == ^_-

y=
Vh'-^-M' Vh'-\-k'

— X
,2 I /.a' -^ 7.2

From (46) and the second of equations (i) we find

Hence (44) becomes

ck

and since a, b, f^ and f^^ are zero, equation (4) becomes

ck ) je

^Ni+-^

while either of equations (5) gives

ck ) k

/.

r^^i c.

(45)

{46)

(47)

(48)

Substituting for r' in (49) its value, that equation becomes

(49)

SO that we have

Whence

k VW^^ = c{h' -^ k')

'

rip'

VW^' = %-ck.k

c ^ VW+J'

k h'-kf

(50)

(51)
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Next substituting the value of r^ in (48), it becomes

-f=V/i -^k +ck=-^
= If —^r^' (52)

From equations (50) and (52) we see that we cannot have
h and k equal ;

but with this exception the assumptions
X =: h cos Vy y =: h sin V and z ^^ kv will satisfy all the con-

ditions of the question, and the helix will therefore be the

solution required.

351. When problems of relative maj^ima or minima are to

be considered, the same method must be adopted as in the

case of two co-ordinates
;
that is, we multiply the integral

which is to remain constant bj' a constant, say a
;
and it seems,

therefore, unnecessary to introduce here any question of this

class. Indeed, as the method of treatmg all the problems
which belong to this section, whether of absolute or relative

maxima and minima, is quite uniform, our knowledge of the

calculus of variations would not be materially increased by
their multiplication. Moreover, these questions generally
lead us into work of considerable length, and rarely afford us

any solution in finite terms, and are therefore somewhat
wearisome. We shall therefore merely state two or three

additional problems which the reader will find in the work

by Prof. Jellett, or in the more recent French work, Calcul des

Variations, by Moigno and Lindelof.

(i) To draw between two fixed points or curves upon a

given surface a curve which will maximize or minimize the

expression

Ur^ r\v-^Vx')ds,

V and V being functions of the co-ordinates x, y and z only.

(2) Two fixed pomts on a surface being given, and a curve

connecting them, it is required to draw between these points
a curve of given length such that the portion of the given
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surface included between the given and the required curve

may be a maximum.

(3) To find the form which a cord resting upon a given
surface must assume in order that its centre of gravity may
be as low as possible.

362. It will readily appear that while the adoption of s as

the independent variable often presents great advantages in

the discussion of the terms of the first order, it is exceedingly
unfavorable to a successful examination of those of the second

order. For, in the first place, even when the limiting values

of X, y, 2, etc., are fixed, we would be obliged to add to SU
the terms

and then the relations between ds and 6x, 6y and S2 at either

limit, which we have previously used, and which are true to

the first order only, must be replaced by more accurate equa-
tions. In the use of these more accurate equations, certain

terms of the second order will evidently arise at the limits
;

and as we may only equate those of the first order to zero,

these terms cannot be neglected, but must be added to those

already in the second order, thus rendering them more com-

plicated.

In the second place, when we are obliged to use the

method of Lagrange, we must render that method true to the

second order, which we have not hitherto done. To accom^

plish this, w^hether ;i: or ^ be the independent variable, we first

take the variation of U to the second order. Then, supposing
the connecting equation to ht f{x,y, ^)

= o =/, we shall have

^f= fx^^ + fy^y -\-fz^2

+ t(/-^^' + ^fxy^^^y+ fyy^/ + etc.) =: O.
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Hence we may write // Sfdx = o, where the Umits depend

upon the independent variable.

Now after having given to / such a value as will cause

the terms of the first order to vanish after // d/dx has been

added to ^U, we must remember that the variations in the

terms of the second order are not independent, but are still

connected by the equation/= o.

If then these terms should be certainly invariably positive
or negative, we have a minimum in the former and a maxi-

mum in the latter case. But as we shall generally be unable,

if /be a differential equation, to impose this restriction in any
explicit manner upon the variations, we shall not usually be

successful in determining the sign of these terms. Of course

when / is a differential equation, its variation is taken to the

second order, as already explained.

363. In the discussion of problems involving three co-

ordinates, we have, according to our usual method, ascribed

no variation to the independent variable, whether that vari-

able be X or s. But it is quite common among writers to vary
the independent variable also, just as has been already ex-

plained for problems of two co-ordinates.

Consider first, for a moment, the case in which ;r is the

independent variable. Here we follow without change the

reasoning of Art. 264 until we arrive at equation (7), after

which we still follow the article, only observing, in finding the

values of -^ and dF, that V is now a function of x,^',/,

. . . . z, z'
,

. . . . Then, having obtained the longer expression
for SU, which will replace equation (10), it is evident that

equations (15), Art. 265, will still hold true to the first order,
and that, by the same reasoning for x and z, we shall have the
additional equations
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(^^^ =^ + z" Sx, dz" = ^^ + z'^'dx, etc.
; (i)dx ax- ^ '

where cso^ ^^ Sz — z'Sx. Therefore, proceeding as in Art. 266,

we shall obtain, instead of equation (17), an expression for dU
identical in form with that which would result from ascribing
no variation to x, except that oo and 00^ will replace dy and ^z.

Moreover, since, to the first order, gd and cs^ equal dy and

dz in the other method, we see that whatever relations may
hold between these variations when the ordinary method is

employed must hold also between od and (^ when x is varied,

so that, as in the case of two co-ordinates, the same general

equations will be obtained by either method, and it will be

found also that the same equations at the limits can be estab-

lished by either method.

Next, when s is the independent variable, we proceed as in

Art. 296, merely observing, in finding the values of v' and Sv^

that V is now a function of s and x, y and z with their differen-

tial coefficients with respect to s. Moreover, we shall have, in

addition to equations (7) of that article, which will still hold

true to the first order, the equations

dz' = (GD^y + z"Ss, 6z" = {oD^y+ z'^'Ss, etc., (2)

where gd^ r= Sz — z'Ss.

Hence, as in the case of two co-ordinates only, we shall

find that d^will take the same form as if we had ascribed no

variations to s, except that go^, gdv and gd^ will take the place
of 6xj 6y and dz respectively.



CHAPTER III.

MAXIMA AND MINIMA OF MULTIPLE INTEGRALS.

Section I.

CASE IN WHICH U IS A DOUBLE INTEGRAL; THE LIMITING
VALUES OF X, V, Z, ETC, BEING FIXED.

Problem LVII.

354. Suppose we require the form of the surface of least area

terminated in all directions by a certain fixed and closed linear

boundary.

If this boundary were a plane curve or any linear figure

situated entirely in the same plane, the required surface would

of course be itself plane. But we here wish that the bound-

ing frame or edge may have any assigned form whatever, not

inconsistent with the condition that it shall be closed.

Suppose, then, the required minimum surface to have been

obtained, and call it the required surface, and suppose we
take any other surface having a common edge with the first,

and call this the derived surface. Then it will appear, as

in Prob. I., that to prove the required surface to be that

of least area we must, in the first place, assume that the

derived surface with which its area is compared differs from

it in form infinitesimally only. Then if the surface found

have a less area than any such derived surface, it will be a
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minimum, that term being used in the technical sense already

explained, and it will then be in order, in discussing the least

surface, to consider whether there may be any other minima.

We shall then at present discuss only the problem of find-

ing the minimum surface.

356. Now let x, y and z be the co-ordinates of any point of

the required surface, and suppose four indefinite planes
—two

parallel to the plane of yz, and two parallel to that of xz,

the distance between the former two being dx, and between
the latter two dy. Then, denoting by ds an element of the

surface intercepted at any point by any four planes drawn as

above, it is known that we shall have

ds^Vi -^z"-^z;dydx,

where accents above denote total differentiation with respect
to Xy and those below the same with respect to y. See De

Morgan's Diff. and Integ. Calc, p. 444. Therefore, designating
the surface whose area is to become a minimum by U, we have

to minimize the expression

U= / Vi^z'-'-^z'dydx^ / / Vdydx, (i)

356. It is essential that we should here recall from the

theory of double integration a clear conception of the precise

meaning of equation (i). Suppose, then, the entire surface to

be divided into strips by planes parallel to that of yz, the

distance between these planes being dx. Then, the area in

question equals the sum of these strips, while that of any strip

is itself equal to the sum of the elemental areas intercepted
on it by successive planes parallel to that of xz, and sepa-
rated by the distance dy.

To effect this latter summation, which we shall always
suppose to have been first accomplished, we must imagme
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the value of V to have been obtained from the general equa-
tion of the surface, thus rendering Fsome function of x and

y only, since z is some function of x and y ;
and then, as x and

dx will have the same value for every element of the same

strip, while y will vary, we must integrate the expression

Vdydx under the supposition that x and dx are constants.

But since the summation must extend throughout any strip

which we wish to consider, if we denote by y^ and y^ the

values of y at its extremities, the area of any strip will evi-

dently be given by the expression / Vdydx, x and dx being

treated as constants. But because V was made a function of

X and J ov\j,J Vdy will be a function of these quantities ;
and

since for any particular strip y^ and y^ will certainly be func-

tions of X only, and perhaps constants, if we put 5 for the area

of any strip, we may write

5 = f{x) dx =fdx, (2)

Now to effect the summation of the strips, which is always
the latter process, we suppose the edge or contour of the sur-

face, when it has been projected upon the plane of xy, to

form a curve capable of being expressed by the equation

y
—

Fix), which curve we shall call Xh^ projected contour. Then

equation (2), which was before true for any strip, becomes so

for every strip. Hence we need no longer regard x as con-

stant
;
and integrating from x^ to x^, where x^ and x^ denote

the extreme abscissas of the surface, or rather of the projected

contour, we shall obtain the entire surface U.

357. Hitherto we have usually employed the suffixes o, i,

etc., to denote* what the quantity to which they are applied
will become when the independent variable receives a partic-
ular value. Now because, in the discussion of curves, whether
situated in space or not, we have but one independent vari-
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able, ;ir or J or some other, this method is satisfactory. But in

problems relative to surfaces, where no curve is traced, x and

y are evidently entirely independent, so that the substitution

of a particular value of one variable does not necessitate the

substitution of any particular value of the other, as it would if

we were discussing a curve. It is, therefore, important that

we should be able to specify just what substitutions of each

variable are to be made in any function, which cannot be con-

veniently done by suffixes, particularly when we come to in-

tegrals of the third or higher order, involving three or more

independent variables.

These substitutions are indicated in the following simple
manner. Let x, y, z, etc., be any quantities whatever, and let

F be any function of these quantities. Then when we put for

any of these quantities a particular value, as x^ for x, we write

i% it being always understood that a suffixed quantity is sub-

stituted for the unsuffixed one of the same name. Also, if it

be necessary to denote that x^ has been substituted for x and

y^ for y, we write the new function thus, I F^ where we

shall always suppose y^ to have been first substituted for y,

after which x^ is substituted for x in the resulting function.

Again, suppose / to be a function integrable with respect

to X, its general integral being F, Then we may write

J.Jdx = F,-F,= l F- I F

Now as we shall often have expressions of a similar form aris-

ing from definite integration, we write the last equation thus,

/ fdx = /^ F, where it will be always signified that we are

to substitute successivel}^ the upper and lower suffixed for the

corresponding unsuffixed quantity, and then subtract the sec-

ond result from the first.
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Extending this principle still further, j^ j F will denote

the following operations : tirst, that we must substitute suc-

cessively j^i and Jo for jK, and subtract the second result from
the first

;
and second, that in the result we must substitute x^

and x^ for x^ and subtract as before. Thus we shall have

F=
\

F- F
Ixq lyo Ixq ) I /

/iCi / ?/i Ix^ ly^ Ixa lyi /a-o /2/o= 1 I F~l I P-l I F^l I F- (3)

358. The idea of employing a sign to denote substitution

is due to M. Sarrus, who calls it the sign pf substitution, a

name which we shall retain
;
and it seems probable that, as

Prof. Todhunter has remarked, since Lagrange introduced his

symbol ^, nothing has been suggested which, is of such service

to the calculus of variations as this sign. But the sign and
the method of employing it were subsequently modified by
Cauchy, whose method we substantially follow, as exhibited

in the Calcid des Variations by Moigno and Lindelof.

359. As an illustration of the preceding discussion, let us

suppose the given surface to be spherical, taking the origin at

its centre, and considering only some portion of the upper
hemisphere, whose edge or contour is to have any form we
please. We may notice that z' is the partial differential coef-

ficient of z with respect to x, and is obtained therefore from
the equation of the surface by regarding y as constant

;
and

similarly x must be constant in obtaining z^. The equation of

the sphere is x" ^ y" -^ z" = r". Whence

z' = X — X
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SO that (i) becomes

jj __ n^x rvi rdydx~
tAo Jyo vp — x^ —y

But regarding x as constant, we have

/-—^-^^rsin- J^^+ c:

and the definite integral may be written

S = / rsm-'—^
'yo

|/^. _ ^.
dx.

Thus we see that 5 does not contain z, and is also indepen-
dent of the general values of y, but may still be some function

of X.

Now if we wish to denote the area of any particular strip
for which x = Xa, we have only to write

/ / r sm - — -^ dx.
I Iv^

^/r" - x'

To complete the integration, let us require all the surface

for which neither x, y nor 2 shall become negative. Then we
shall have

y. = 0, y, = Vr' — x\ S= , U=: / = / ;

and since the entire eighth of the sphere is required, Xa= o

and x^ = r, and [/—
2

360. Returning now to our original problem, we see that

we can pass from any given surface to any other differing
from it infinitesimally in form, and having a common edge, by
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giving to z suitable infinitesimal increments throughout the

surface, the values of both x and y undergoing no change ;
and

as dz indicates the change which z undergoes when we pass
from one point to its consecutive on the same surface, we des-

ignate the new increments, as before, by Sz. Moreover, we
can also, without varying x or

jj/,
obtain the derived surface by

giving infinitesimal variations to z' and z^, which are the tan-

gents of the angles made with the plane of xy by those two

edges of any elemental area which meet at the point x^ y, z.

If now we denote by (^^ the change in area which the en-

tire surface will undergo when z, z' and z^ receive infinitesimal

variations, the required surface must evidently be such as to

render df/ negative. But as we cannot express ^in any more

explicit form than that given in (i), and as we must compare
the required surface with such as can be derived by infinites-

imal changes in its form, Ave are compelled to seek the varia-

tion of the double integral in (i) in order to determine what

conditions will render the variation negative.

361. In order to consider the subject more generally, let

us assume the equation

where Fis any function of Xy y, z, z' and z^, the limiting values

of X, y and z being fixed
;
and let us, for convenience, write

z' =/, ^^
=

q^ z" = r, zl
—

s and z^^
= /. Then if we change

z into z -\-'^z, p into p -\- ^p and g into g+ Sg, x, dx, y and dy

remaining unaltered, and denote hy SU and dV the changes
which U and V will undergo, we shall have

= rrVdydx-\-rr,Vdydx.
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Whence, from (i),

We have now merely to determine (^Fby Taylor's Theorem,

which, since x and y undergo no change, will give

+ Vy^sp'^ 2 1\ Sz 6q+ 2 Fp, Sp 6q+ V^^ Sq^
[
+ etc.

; (3)

where the etc. denotes terms of the third and higher orders,

and the differentials of V are all partial.

362. Now denoting by vS the terms of the second order in

S V, with the exception of the -, we shall have

^^=
£?fy''^ ^''^'+ V,,SpJ^V^Sq\dydx

+ 2X. X Sdydx-^^^o. (4)

If now we require that U shall become either a maximum
or a minimum, it will, since Sz^ Sp and 6q are entirely in our

power and may have either sign, appear, by precisely the

same reasoning as in the case of single integrals, that the

first integral in (4) must vanish, while the second must become

invariably positive for a minimum and negative for a maximum.
Now we must observe that x and y are completely inde-

pendent, and that z' and z" or / and r are the differential co-

efficients of z with respect to x, y being regarded as constant
;
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that is, in finding them, we regard -S' as a function of x only,
and constants, among which we reckon y. Or we may regard
z as the ordinate of the curve made by the intersection of the

required surface with a plane parallel to that of xz at the

distance y. Similarly, z^ and z^^ or q and t are the differen-

tials of z with respect to y, x being constant
;
that is, z may

now be regarded as the ordinate of the section cut by a plane
at right angles to the first, and at the distance x from the

plane of yz. Therefore, as x and y receive no variation, we
we must have, as heretofore,

dz' or Sp — —— ,
8z" or Sr — —^-r-,ax ax

dSz . .^ d^Sz
dz^ or dq = ——, oz., or 6t =

2 '

dy
' ''

dy

and these equations, which are exact, may be used in any
manner we find convenient in transforming SU.

363, Considering for the present the terms of the first

order only, we have

<^^=/"X"5 F,fo+ rp(J/+ V,SqUfydx = o. (5)

But without entering upon any general discussion of the con-

ditions which must hold in order that (5) may be satisfied, let

us return to our original problem. Here
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SO that (5) gives

Now we cannot assert that every element of this integral
must vanish, because we have also required that the edges of

the surface shall be fixed—that is, that dz, for all points of the

edge or contour, shall vanish—and this condition has not yet
been imposed upon dU. Indeed, there is an analogy between
the present problem and Prob. I. For in Prob. I. we were to

connect two fixed points by a line of minimum length, requir-

ing us to minimize a single integral ;
while in the present prob-

lem we are to connect an infinite number of fixed points,

forming the given contour, by a surface of minimum area, re-

quiring thereby the minimizing of a double integral.

364-. The condition just mentioned may be imposed some-

what as in Prob. I. For we have

dqdy dx^0 ^'Vo
|/i_|_^2_|_^2

Szdx
'^0 lyo ^j -f/-(-^^

If now we remember that for any abscissa x, y^ and y^ are the

two ordinates of the projected contour corresponding to this

abscissa, we shall see that the ^'s corresponding to y^ and y^ re-

late to the edge or contour only of the required surface, and
that therefore every dz in the single integral in (7) must van-

ish, causing the integral itself to vanish.

Now since we may adopt either order of integration in a
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double definite integral without affecting its value, we may
write

_ P_ ^^ dy

_p l>y,d p_ ^^ ^^_

Here we regard y as the independent variable in the equation
of the projected contour^ so that x^ and x^ are always ordinates

of this contour, y being the abscissa. Hence, as before, every
Sz in the single integral of the last equation refers to some

portion of the contour only, and must vanish.

Hence, finally, we must have

365. It is here necessary to notice two points.
First. It will be seen that the form in which the terms

under the sign of single integration—which terms are the
terms at the Hmits in this problem—have been left is incongru-
ous, inasmuch as we do not retain the same independent vari-

able throughout. But our only object at present is to show
that when the contour is fixed the terms at the limits will

vanish. Indeed, the arrangement of these terms in the case
of multiple integrals, so as to enable us to discuss with any-
thing like generality the conditions which must hold at the



SURFACE OF MINIMUM AREA. 433

limits, has proved to mathematicians one of the most difficult

points connected with the calculus of variations. For although
this subject had more or less occupied the attention of Gauss,

Poisson, Ostrogradsky, Jacobi and Delaunay, the last of

whom has been followed by Prof. Jellett, it remained for M.
Sarrus to present a method of treatment which has the merit

of being systematic and general, and is perhaps as nearly f»er-

fect as the nature of the subject will permit.
Second. The two differentials in (9) denote the entire

change produced in the first fraction when we change x into

X+ dx, and in the second when we change y into y -\- dy, p
and q being variable both for changes in x and y, so that, with

respect to x or y only, these differentials may be said to be

total. Such differentials are, however, called partial, since

they denote the change incident upon an alteration in one in-

dependent variable only, while there are two which might be

varied.

366. Now the two single integrals in (7) and (8), taken to-

gether, certainly involve every dz for the contour, which

would not perhaps be true of the first integral alone if a por-
tion of the projected contour should be a right line perpen-
dicular to the axis of x, nor of the second if a portion of the

projected contour should be a right line perpendicular to the

axis of J. Hence in (9) the condition that Sz shall be zero

throughout the entire contour has been imposed.
Now as the sign of Sz for every point of the required sur-

face is wholly within our power, and its value is subject to no

other restrictions than that it shall be infinitesimal, and shall

render dp and Sq also infinitesimal, it will appear, as hitherto,

that we can only satisfy (9) by equating M to zero, so that we
shall have

A^--^^-^-^±-—i-_-^^-M=o. (10)
dx Vi-\-p'-\-q' dy 4/1+/+ ?"
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Performing the differentiation indicated in the last equation,

observing that p^ — q'
— s, we have, after reducing to a com-

mon denominator,

This expression, which is a partial differential equation of

the second order, is known to indicate that the required sur-

face must be of such a nature that at every point the principal

radii of curvature may be equal and taken with a contrary

sign, so that their sum may be always zero. Moreover, equa-
tion (lo), which is the fundamental equation, would evidently
be satisfied by a plane, since / and q would then become con-

stant. This could not, however, as we have already shown,
be the general solution, because, if the given contour were not

a plane figure it would not be possible to make a plane sur-

face fulfil all the conditions at the limits
;
that is, to pass

through every point of the given contour. But we shall

resume the consideration of (ii) presently.

367. Assuming the required surface in any particular case

to have been determined, let us now examine the sign of the

terms of the second order. Since c does not enter V expli-

citly, we have, from (2) and (4),

5 = Vpp<Sf + 2 VpqSp dq + Vqq 6q'

_{l+q^) Sf-2pqSpSqJr{l-\-p'')^g'
(1+/ + ^^)'

Whence, since the terms of the first order vanish, we may
write

^^-2J^.Jy, JJ^fj^g'),
dydx, (12)
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which shows that dU \^ invariably positive, since every ele-

ment of the double integral is essentially so.

We see, therefore, without solving (lo), that so long as the

contour of the required surface is to be fixed, any surface

which satisfies (lo) or (ii), and can also pass through every

point of the given contour, will possess a minimum area.

We should not, however, say that the surface thus found is

necessarily that of the least area. For although this may be

true in the present problem, the method of variations does

not of itself warrant the assertion. This will at once appear
if we remember that the calculus of variations permits us to

compare the required primitive surface with such derived

surfaces only as differ from it infinitesimally in form
;
and we

cannot, therefore, be certain that there might not be some
other minimum surface whose area, being less, might itself

be the least possible.

Moreover, since ^p and ^q must be infinitesimal, we are

not permitted to consider any step-shaped surface ;
and one

of these might, perhaps, be that of least area. In fact, it will

appear that, theoretically at least, the distinction between

maxima and minima, and greatest and least, values must hold

equally whether the integral be single or double.

368. Let us now return to the terms of the first order.

It is easy to see that had the equation been

where V contained x, y, z, p and q, the same reasoning by
which we obtained (lo) would have given us the equation

J/=r,-(F^)'-(r,)=o; (.3)

and from the case of single integrals we would naturally infer,

what we shall presently show, that this equation will be true
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independently of any conditions which may be required to

hold at the limits.

Indeed, this fundamental equation appears to present itself

naturally, and to have been obtained almost as soon as the sub-

ject was discussed
;
while no subsequent researches have given

us any other equation. Now (13) will be what is known as a

partial differential equation of the second order, the variables

X and y being entirely independent, and z being supposed to

be some function of these variables. But the theory of such

equations is still imperfect, it being uncertain even that every

partial differential equation of the second order has any solu-

tion at all
;
so that we are very rarely able to obtain the com-

plete integral of the equation J/= o, or indeed to obtain any
solution whatever in finite terms.

We know, however, that when a partial differential equa-
tion of any order can be integrated completely, the integra-
tion will introduce certain arbitrary functions instead of the

ordinary arbitrary constants, and that, however the solution

be obtained, the number of these arbitrary functions will not

exceed that of the order of the partial differential equation.

369. According to Moigno, the integral of equation (10)

was first obtained by Monge, but in a form which rendered

it of little use. Strictly speaking, however, this integral was
not obtained by Monge in any form, but merely indicated.

(See Monge, section on '* The surface whose principal radii

of curvature are equal, but with contrary sign"
—Section XX.

in Dr. Liouville's edition.)

The same integral was, according to Moigno, considered

also by Legendre, and later by Messrs. Seret and Catalan,
without obtaining any better results. Finally, however, M.
Ossian Bonnet in an article on " The Employment of a New
System of Variables," pubhshed in the fifth volume of the

Journal de Liouville, i860, has shown that the equation of the

required surface is included under a still more general obtain-
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able integral of comparative simplicity. We present in a note

Bonnet's method, following the guidance of Moigno, and sup-

plying formulas and references, all of which he has omitted.

370. It appears that we can have an infinite number of

surfaces, all satisfying equation (lo), but it is evident that,

when the contour is given, we are restricted to that surface

or those surfaces which pass through every point of the fixed

contour, and have at the same time their principal radii of

curvature equal and of contrary sign. Or following the anal-

ogy of single integrals, if we suppose the general integral of

equation (lo) to have been obtained, we must so determine
the arbitrary functions which arise in the integration as to

cause the surface to pass through every point of the given
contour. But as we are unable to present the integral of (lo)
in an available form, we cannot give anything more than this

general outline of the treatment of the functions for this prob-
lem.

Problem LVIII.

371. Let V be the portion of the axis of z comprised between

the origin and any tangent plane to a surface. Then it is required
to determine the form of the surface which will minimize the ex-

pression

the edges of the surface being, as before, confined to a fixed curve.

It is well known that this intersept is

V ^:^ z —px — qy^

so that we have
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Here, then, we have

Vz— niv'^-^, Vp= — mv'^-'^ X, Vq = —
mv'^-'^j/,

(^Vpy=
— mv'^-'^ — xm{m— i)v^-'^ v'

,

(J7'^)^=
— mv'^~^ — ymim — i)v'^~^Vj ;

so that the fundamental equation

becomes, after dividing by 'm{m
—

i),

(2)

^'""'*;;r^i-
+ ^^'+-^^'}=°' (3)

\

the terms at the Hmits vanishing as before, because they involve

the values of Sz for the contour only, which are all zero.

Now one solution of (3) is evidently v = 0; which gives

U — o, and signifies that the surface is a conic surface, having
its apex at the origin, as all its tangent planes must pass

through that point. But neglecting this supposition, which

is only a singular solution, and will evidently not answer for

all supposable contours, we shall have

3^'

f-^^'+/^, = 0. (4)m— \

372. Equation (4), although in reality an equation of the

second order, is a partial differential equation of the first order

yv
in V

;
and being- written under the form xv' -\- yv, = ,

is

easily integrated by the ordinary method for such equations

(see De Morgan's Diff. and Integ. Calc, p. 203, where we put

X = X, Y= y, z = u — U), and Sfives

/(I).
(5)
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y
where / denotes any function whatever of —

. Substituting

the value of v, (5) may be written

xp-\-yq^z-x '^~=^f (I).
(6)

Now by putting- the second member of this equation for Um
De Morgan, (6) can be integrated by the same method as be-

fore, and writing

m-\-2^\xl "^^UJ'
we obtain

^=;r^i^g)+;r/'g), (7)

where F andf are any functions whatever.

373. Thus we have been able in the present case to ob-

tain the general integral of the equation M —o. This integral

represents an infinite number of surfaces according to the

forms which we assign to the functions F and f. If, as

hitherto, we suppose the contour of the required surface to

be some linear boundary fixed in space, we must so deter-

mine the forms of these arbitrary functions as to cause the

surface to pass through every point of this boundary. But
we shall consider the determination of these functions more

fully hereafter.

Section II.

FORMULM NECESSAR Y FOR THE TRANSFORMA TION OF THE
VARIATION OF A MULTIPIE INTEGRAL

374. We propose in the present section to present some
formulae which belong, strictly speaking, to the differential

and integral calculus only, but which, having been developed
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by M. Sarrus for the purpose of so transforming the variation

of a multiple integral as to enable us to discuss more satisfac-

torily the conditions which must hold at the limits, will not

be found in treatises on the ordinary calculus. We begin
with a formula which is generally known.

375. Assume the equation U=^ udx, where u is some

function of x, t, etc., / being either a constant, or a variable

which is to be regarded as a constant in obtaining the inte-

gral. If we change t into / -|- ^t, we shall, in the most general
case which can arise, have

6U=u,dx-u,dx,-\-J^
'

-—- St dx.
^0 dt

For since / is a constant, it is independent of the general
values of x, so that we may vary it without varying x. But
the values of x^ and x^ are constants, and may, or may not, be

independent of t. In the former case the first two terms of

the last equation will vanish, but in the latter they must evi-

dently be retained. But it is evidently immaterial in the last

equation whether we employ the symbol S or d\ so that if we
regard dt as an infinitesimal constant, we may write

—- udx = dx A i— V— •

dt^^o t/a-o dt
'

dt dt

Or using the sign of substitution, already explained, we have

-J- I udx — j -— dx A- / u -—
; (i^

where it will be seen that we make the sign of substitution

mean also that dx, and dx, are put for dx
;
and this will be

always the case except it be otherwise indicated. As for dt,

because it is constant, dt, differs in no respect from dt, and it
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is immaterial whether we consider it as controlled by the sign
of substitution or not.

376. Again, assume u, as before, to be any function of

X, t, etc., where t may be any quantity independent of, or

dependent upon, x. Then, in the most general case, we must
have

[dii~^^

du ^_ du dx

It!
~

~di ~^~dx~di'

Hence, if we wish to consider zi when x has some particular

value, as x^^ u will become / u, and we may write

/^i /^i \du ,

du dx )

These formulas, which are simple enough, will be found to be

of the highest importance as we proceed.

377. Again, we evidently have

Now change u into / udy. Then we have from (A\ wricing

dx first to prevent confusion,

But from (i) we have

^Jy. ^^y=Jy. -dx'^y+L '^ITx'^
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because when we integrate with respect to y, x is regarded as

constant, and we may therefore, since y is the independent
variable, put it in the place of x, and x, which is now constant,
in the place of /. We may evidently employ (i) in like man-
ner for any other variables, replacing x by that variable, which
is then to be regarded as independent, and t by that which is

then to be regarded as constant in the integration. Hence, by
substitution, we have

rw/-^ dy^pd./\ fi = /" r\ dy. (B)t/^o t/z/o dx *^^o ly^ dx '^0 ^2/0
-^ ^ ^

Now in this equation change u into ut. Then, observing that

the integral signs in any term, having been separated merely
to better indicate the distance to which each extends, may be

again brought together, as may also the differentials, we shall

,
. d

,
udt

,
du

,

have, since ——ut^^ r -7— Adx dx dx

I I 71 —- dy dx ^=^ — I / —-tdydx-\- / ut dy
^Xo tJyo dx *^^o t/2/0 dx '^0 ^Vo -^

-^rn\u%d.. (3)^^0 /2/0 dx ^^'

This formula would evidently enable us to transform such a

term as / / V^dp dy dx.

ti, we shall have

But from (2), putting x for t and y for ;i', we have

dx'
^^~'

[d^^d^d^]'
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Therefore we have, by substituting in (C),

«/^o / {dx
^

dy dx \
'^o /

Now if in this equation we, as before, change u into ut, we
shall obtain

«^^o / dx ^^0 / dx '^0 '

-p/\f!L±a.-rr^-^t^^d.. (4)^^0 / dy dx ^^0 f
dy dx ^^^

379. We have also the equation

f-^dy^/\. (D)^Vo dy ly^

Hence

/ / -—dydx= / dx I -—dy= dx u\

and changing ?/ into ut, we have

P r\^dyd.= -rr^^tdyd.+p/\td.. (5)

380. Again, from (D), we have

rx:'p"i"C- <^'

Whence, changing, as usual, u into ut, we obtain

/T"i*=-/"rf'*+/T» (^
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We need hardly say that formulae (2), (4) and (6) will often be

replaced by others, in which the suffixes of those quantities

which are written above the sign of substitution only will be

changed from i to o, everything else remaining unaltered
;

and observing this fact, equations (3), (4), (5) and (6) are suffi-

cient for the transformation of the variation of a double inte-

gral.

381. It will, however, be convenient to deduce also in this

place the formulae necessary for the transformation of the

variation of a triple integral. But the reader is advised to

omit these formulae for the present, returning to them when

they are required.

382. If in equation (B) we change u into J^ udz, and sep-

arate the integrals as before, we shall have

/ dx / dy-r L '^dz =

— dx -T- udz -\- L / dy udz.

But from (i) we have

d r^^
,

r'^ du ^ , /^i
dz

-r j udz = -J- dz -\- I Ti -J--
dx*^^o ^^0 dx '^0 dx

Whence, by substituting and reuniting the integral signs, we

have

^-T-dzdydx= — I 7, / u-^dydx
tJxo e/?/o *Jzq dx ^^0 ^y^ '^0 dx

—
/ / -J^ udzdxA- L L. ,L udzdy.
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Now changing u into ut, we shall obtain

/ / / u-j- dzdydx =
t/^o t/</o t/ZQ dx "^

-/"/"# /'«^ d.d.-rrrut^ ^^ ^.. (7)

383. Now it is 'evident that equation (B) will hold for any
two independent variables involved in u. Let us therefore

put J for X, and z for j/.
Then we shall have

/ / —rdzdy=— / u^dy-\- / u dz,
^Vo '-^2o dy

-^ ^2/0 '^0 dy
-^ ^ '^o ^^o

Therefore, since the integrals are all definite, we have

III —r- dz dy dx =
t/a-o t/?/o t/zo dy

— / / / u-r-dydX*-\-II udzdx.

Now change u into ^/Z, and we have

III ti' ~r dz dy dx — —
/ / ^^tdzdydxOxo t/i/o t/zo ^ -^

t/a-o t/2/0 t/zo ^ "^

+ / / / utdzdx-l / / ut'^dydx. (8)

384. Again we have

/
-— dz— u,

Jz, dz '^*
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Therefore, because the integrals are definite, we may write

/ / / -—- dz dy dx =^ / udy dx,
tyxo t/yo v'zo d^

-^
t/xo t/i/o /«o

"^

If now we change u into ut, we shall obtain

/ / I u —- dz dy dx =z
Uxo t/^o *^zo clz

— / / / —-tdzdydxA- / / ut dy dx. (q\
t/xa t/t/o ^Zo dz '^^o ^y^ '-^o "^

The preceding formulse will be found sufficient for the

purposes of this work, although the notion of variations

adopted by M. Sarrus, and the generality of the integrals
which he proposes to consider, have caused him to develop to

a much greater extent than we have done this department of

the calculus, which might be termed the calculus of substitu-

tion. Although we shall subjoin without demonstration a few

more formulas when we com.e to explain Sarrus's notion of

variations, the reader who wishes to find in a neat and com-

pact form the various formulae which may present themselves

in this calculus of substitution is referred to the Calcul des

Variations^ by Moigno and Lindelof, Legons I. and II.
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Section III.

MAXIMA AND MINIMA OF DOUBLE INTEGRALS WITH
VARIABLE LIMITS

Problem LIX.

385. In either of the preceding problems, i7istead of supposing
the contour to be a fixed boundary in space, let it be required

merely that its projection upon the plane of xy—tJiat is, the pro-

jected contour—shall be some fixed and closed boundary. In other

words, let it be required that the contour shall always touch certain

cylindrical zvalls of a given form.

The terms cylindrical and conic must in this chapter be

understood in their most general sense
;
the first denoting- a

surface generated by the movement of a right line which re-

mains always parallel to a given line, and the second that

generated by the movement of a right Une which always

passes through a given point. Here the walls are generated

by the movement along the projected contour of a right Hne

which remains always parallel to the axis of z.

It will readily appear that in this case the limiting values

of x and y are still fixed, because they belong only to the pro-

jected contour, which is fixed, but that z along the contour—
that is, along the limiting walls— is susceptible of variation, so

that Sz at the limits is no longer necessarily zero.

386. We are then led by the preceding problem to exam-

ine what will be the form of SU, where U=J^^ J^^ Vdydx,

V being any function of x, y, z, p and q, the limiting values of

X only being fixed. We have already seen that

SU=r'X'\V,6z-^ V^dpJ^V^dq)dydx', (l)
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and as that value of (^^was obtained under no other restric-

tion than that the limiting values of x and y should be re-

garded as incapable of variation, it must hold in the case

which we are considering.
If now, in equation (3), Art. 377, we write u = Vp, t = dz,

dt ddz ^ 1 11 1— = -7- = Spy we shall have

S.^S1' V,Sp dy dx = -/;£'S ^' '^y^^

Also if, in equation (5), Art. 379, we write u = Vq, t = 6z,

t^
— 6q, we shall obtain

X. y,. V^Sqdydx^

fxi f<J,dV„ /'' /"'

-io I -^'^^y^^+l. L ^'^''^^- (3)

Now since the first term in the second member of (i) is not

susceptible of any transformation, combining these results, ob-

serving that the substitution of a quantity in the sum, differ-

ence, product or quotient of two or more functions is the same
as if we substituted in each function separately and vice versa,

we may write

^u=£C \
V,- v,% \ 6,dx+/;;fy,s.dy'xo /2/0

[

^ ^ dx )
'^0 ^2/0

which must, of course, vanish if U is to be a maximum or a

minimum.
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387. Now the projected contour need not be a continuous

curve, but may be any combination of right lines, curved lines,

or both, and we therefore speak of it as a boundary. Then

y^ and y^ are the two ordinates of this boundary corresponding
to any given value of x^ and the substitution oi y^ or jKo in any

quantity causes that quantity to relate to the upper or the

lower portion of this boundary only. To understand the

effect of substituting x^ or x^ in any quantity, we observe that,

whatever be the form of the projected contour, we must either

have y^ and y, zero, both when x becomes x^ and x^, or it must

consist in part of a right line perpendicular to the axis of x at

the point x = x^ or x = x^, or both. In other words, the

projected contour will terminate in right lines whose equations
are x = x^ and x = x^. In the latter case, then, the substitution
of x^ or x^ in a quantity will cause it to relate to these right
lines only, and in the former case, in which these lines may be

regarded as becoming zero, the quantity will relate to the

points x^ and x^ only, and will in general vanish.

388. Now writing k = Vq — K,^, the first term of ^^in
dx
dy

(4), when resolved, becomes

ll'l'\Szdx-£^'l'"kSzdx, (5)

in which the first integral is taken only along the entire

intersection of the required surface with that portion of the

cylindrical walls for which j^ =:j^,, and the second along its

intersection with those for which y = y^.

The second term in dU, when resolved, becomes

l''ly,S.dy-l''Jy,S.dy, (6)

in which, although the integration is with respect to y, the

first integral extends only along the right line x = x^, while
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the second extends only along the line x = x^, and either inte-

gral will vanish of itself should the projected contour not

terminate in the lines x — x^ and x — x^.

It appears, therefore, that the first two terms of SU'va (4)

involve only values of ^z for the edge or contour of the

required surface ;
and also that all these values are included.

Now when, as in the present case, we require that the surface

to be varied shall be comprised within certain cyhndrical

walls, the walls become the limit of the required surface, just

as do two fixed lines x ^:^ x^ and x •= x^, or two fixed planes
with the same equations in an analogous problem for curves;

so that the terms just considered in SU^ although still affected

by the integral sign, as indeed they ought to be in order that

they may ^um up the variations of z for the entire contour,

must be in the variation of a surface what the terms at the

limits are in the variation of a curve.

389, Let us now examine what conditions must hold when
C/is to be a maximum or a minimum.

Since SU must now vanish, if we denote by L the aggre-

gate of the limiting terms, (4) may be written

wherei/=F, -(Fpy-Cr,),.
Now since the double integral extends throughout the en-

tire surface, it will appear, as in the case of single integrals, that

we cannot, without in some manner restricting the value of

Sz^ make this general integral depend in any manner upon
terms which refer solely to the limits, even when those terms

are themselves under an integral sign. Therefore the terms

in (7), being completely independent, must be equated severally
to zero, so that we shall obtain, as before,

M=. V,-{V^y-{V^\ = o. (8)
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We shall also have, writing the value of L from (5) and (6),

L= / / kdzdx — I kdzdx

+/ X ^P^^dy-I l^ V, fc dy = o. (9)

Now we are evidently at liberty to vary z for any portion
of the contour we please, leaving it unvaried for the remain-

der; and the four terms in (9) are therefore also completely

independent ;
so that these terms must also be equated sever-

ally to zero, giving us the equations

/ k^zdx — o, J I kdzdx =0,

(10)

where the first two integrals extend respectively along the

two portions of the contour whose equations 2irQ y—y^ and

y — y^'^ while the last two, if they exist at all, extend along
the right lines whose equations are x ^ x^ and x = x^.

But Sz along any one of these four portions of the contour

is entirely in our power, while its coefficient is not. It will

therefore appear that we can only make the integral certainly
vanish by supposing the coefficient of dz to vanish through-
out the whole range of the integration. We must therefore

have

l''"k
= o, p^°k

= o, /""Vp^o, l'''Vp
= o\ (11)

where the substitutions merely indicate to what part of the

contour the condition belongs.

390. Let us now consider what equations (11) imply.
The first two equations merely show that k must vanish
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along every portion of the contour for which ;tr is a variable,

while the last two show that /^ must vanish along both por-

tions of the contour whose abscissas are the constants x^ and

x^, if such portions exist. Now restoring the value of k^ and

clearing fractions, we have along the first two portions of the

contour

Vq^dx
—

Vpdj/ = 0. (12)

Moreover, this equation holds also along the other two por-

tions of the contour, when such portions exist, and they furnish

no other condition. For along either of these portions dx

vanishes, while dj/, being taken along the right line x = x^ or

X = x^, does not vanish, so that it is easy to see that the appli-

cation of (12) to either of these portions would lead necessarily

to F^ = o.

It appears, then, that equation (12) must hold for the entire

contour, and that there are no other equations, although we
have already seen that this equation may represent more than

one condition.

391. But before entering upon any further discussion, let

us apply the results which we have obtained to Probs. LVII.

and LVIIL, beginning with the former. Here (12) gives at

once

qdx —pdy — o, (13)

an equation which indicates that the required surface must at

every point of its contour meet at right angles the limiting

cylindrical walls. Now, theoretically speaking, if we could

obtain the general integral of equation (10), Prob. LVIL, in-

volving two arbitrary functions, these functions might be

determined so as to satisfy two conditions at the limits. But

if the limiting walls should consist of a number of sides, curvi-

linear or rectilinear, it is evident that the application of (13)

to each of these sides might involve as many distinct condi-

tions as there are sides
;
so that we would expect in general
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to find it impossible to form a surface which would satisfy

the fundamental equation (lo), and be also at right angles to

more than two sides of a limiting wall
; although it might

happen that the surface which would satisfy two ot these

conditions would satisfy the others also.

If, as is usual, we suppose the projected contour to be

some closed curve, the limiting wall has but two parts, those

for which y — y^ and y —y^, and all the terms in dU affected

by the substitution of x^ or x^ disappear. In this case, there-

fore, we v/ould infer that all the conditions of the question
could be satisfied.

392. Let us now turn to Prob. LVIII. Here we find that

equation (12) will give the condition

p(m ^^{ydx
— xdy)^o. (14)

Now as the second factor of this equation relates solely to the

projected contour., it can become zero only when the portion
of this contour along which it vanishes is a right line passing

through the origin. But along any portion of the contour

whose projection is not such a right line we must have v^o
But along any portion of the projected contour which is not 2-

y
right line passing through the origin,

— must be variable.

Hence, in order to satisfy equation (5), Art. 372,/ f-j
and con-

sequently i^(-) must vanish throughout the entire surface,

and equation (7), Art. 372, will become z —
x/'(-j,

which is the

general equation of a conic surface, having its summit at the

origin. See De Morgan's Diff. and Intg. Cal., p. 400, where

m, n and / are to be made zero.

Now this conic surface must meet every element of the

cylindrical wall, and the functionf must be such as to enable
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the surface to satisfy this condition. But it must appear upon

reflection that this condition will not enable us to determine

the form of/', since it is evident that the conic surface might

be of various characters and. still touch every element of the

cylindrical walls.

Problem LX.

393. Suppose we next demand that in Prohs. LVIL and

L VIIL the contour of the required surface shall always rest upon

one or more given surfaces.

This case is evidently analogous to that in which we are

to connect two given curves by a curve having a certain maxi-

mum or minimum property, and we can in a similar manner

pass from the primitive to the derived surface by first ascrib-

ing such variations to z, p and q as will give us a derived

surface of any required form, and then so altering the dimen-

sions of this surface as to cause it to intercept the bounding
surface or surfaces.

This change of dimension will involve an alteration in the

form of the projected contour, and to consider this contour in

the most general manner, we shall, as before, suppose that it

terminates in the lines x =^ x^ and x = x^, as we can then easily

make the formulas thus obtained applicable to any other case

by reducing one or both these lines to points. We shall,

moreover, for convenience, denote the four portions of either

contour corresponding respectively to
jj/
= y^, y = y^, x =^ x^

and X — x^ by the terms lozver, upper, left and right.

But in changing the form of the projected contour we
need not vary the general values of x or y, but merely those

of J^o> Ji> ^0 ai^d jTj. For we must remember that this contour

encloses a certain plane surface, and that the general values

of X and y, as used in the double integral, must include the

co-ordinates of every point of this plane surface
;
so that for

every value of x there are an infinity of values for 7. If, there-
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fore, we regard x and y as varying throughout the integral,

as we evidently may, we in effect suppose the points of this

plane to change their positions. But this is manifestly use-

less, it being sufficient to add to the ordinates }\ and )\^ and
to the abscissas x\ and x^, infinitesimal increments Dy^ Dy^, Dx^
and Dx^, these quantities being independent of either sign,

and representing the same increments as would be denoted

by Sy^ and dx^ and dx^, if we had been obliged to vary in the

same manner the form of the projected contour in the case of

a single integral, the limits being also variable.

394. Let us now consider in detail the mode of obtaining

SUy where U =J^ J Vdydx, V being any function of x, y,

z, p and q, the limiting values of x and y being also subject to

variation.

First, varying z^p and q only, we have, to the second order.

r^ r\ V,6z+ VpSp+ V^Sqldydx

+ 2V^qSpdq+ Vq^Sq^\dydx. (l)

This gives to the second order the change which 6^ will under-

go when we pass from any primitive to any derived surface,

the form of the projected contour or of the bounding walls

remaining unaltered.

In the second place, let us consider the change which [/

will undergo when we alter the dimensions of this derived

surface in any infinitesimal manner we please, supposing
x^ and jTj to remain unchanged. Since U consists of the sum

of the elements dx I Vdy, in which the integration is entirely

independent of x^ that quantity being regarded merely as a
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constant, if it enter Fat all, the change sought will evidently be
the sum of the additional changes which each element will

undergo if, after having varied z, p and q only, we also vary
/o and jKi by adding any increment or decrement, Dy^ and Dy^,

Proceeding, then, with one of these elements as if it were
the only integral in question, we shall obtain, in addition to

the terms arising from the variation of ^, / and q only, which
are already included in (i), the terms

C 1
^'^y+ 1 ^' ^y^ +^vDy\, (2)

where

and
K^Vy^V,q+V^s+V^t (3)

6V= V,Sz+ Vpdpi-V^Sq, (4)

Hence, summing the changes in all the elements, we have

VDy-^r\v,D/+ 6VDy \ dx, (5)

which gives the change sought, and must be added to (i).

395. We must now consider, in the third place, what

change U will undergo when we make any infinitesimal

changes in the values of x^ and ;r,.

It is easy to see that we can, if we choose, pass from the

primitive to the derived surface by first making the necessary

changes in y^ and y^, or in the form of the upper or lower por-
tions of the projected contour^ x^ and x^ remaining fixed, as

also the form of the surface
;
and then varying the surface

under the supposition that z, p and q vary, and also that x^ and

x^ become respectively x^ -f Dx^ and x^ -\- Dx,, the new limit-

ing values of y, which are y^ -\- Dy^ and y^ -\- Dy^, remaining
fixed. Now the portion of c^C/ which will arise from varying
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this surface, supposing x^ and x^ to remain fixed, is, as we have

seen, found by taking the sum of equations (i) and (5), so that

we have now to determine the portion which will arise merely
from changing x^ and x^ into x^ + Dx^ and x^ + Dx^, and this

added to (i) and (5) vvill evidently give the complete variation

of U to the second order.

396. Now by the changes in the limiting values of j alone,

U will become

P^\ f*V\-\-'Dyx nx-i

I ^ Vdy dx or / vdx. (6)

where

V =fjydy^ly VDy+ etc.\= v^+l^ VBy+ etc.}. (7)

Now since v does not contain the limiting values of x, either

explicitly or implicitly, any element vdx will be independent
of any changes in these limiting values, and therefore, although
2^ is a definite integral, we may employ the same reasoning as

though it were not, and say that the change in
J^ vdx, due

to the variation of the limits x^ and x^, must be

1: 1
'Dx-\^- v' Dx"+ dvDx

\
. (8)

Let us now approximate in (8) as far as the terms of the

seconS order. We have

= /"' f' VdyDx^ r- l^'VDyDx, (9)

where we mu^t remember that the last term represents four

terms involving merely the values of V, Dy and Dx at what
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we may term the four corners of the surface, although Dx^

and Dx^ are infinitesimal and independent constants.

Now in reducing the second and third terms in (8) it will

evidently be sufficient to regard v as merely equal to v"^. Then,

by equation (i), Art. 375, we have

and therefore, to the second order,

i^^\ dv /^i I py^dV /^i /y^i dv „ , X

/ l.'^D^-^^ 1/ ^dyDx' + l I ~Vi-Dx\ (10)
^^0 2 dx '^0 2 ^^0 dx -^ ' '-^0 '^0 2 dx

^=V'=V,+ V,p+ Vpr+ Vqs, (II)

where accents as usual denote total differentials. We shall

have also, to the second order,

r^dvDx = I'^'S r^VdyDx = r^ r'dVdyDx, (12)

where SV has the value given in (4). Hence, adding equa-
tions (9), (10) and (12), we obtain, for the last portion of ^U,

'^C-2 V%Dx'-^XyVdyDx }

.

(13)

397, Now by adding (i), (5) and (13), and then substitut-

ing the values of V, V^ and ^Ffrom (3), (4) and (11), we shall

have the complete variation of U to the second order ;
and if

U is to be a maximum or a minimum, the terms of the first

order must vanish, while those of the second must become in-

variably negative for a maximum and positive for a minimum.
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As will be naturally surmised from their complicated na-

ture, the determination of the sign of the terms of the second

order transcends our present knowledge of variations, even

when the form of V is known
;
and we shall therefore in future

consider only those terms in dt/ which are of the first order.

Collecting these terms, we have

+X'X' 5 ^'^^ + ^^^^+ V^6q\dydx = O. (14)

iVow transforming the double integral as in equation (4) of

the preceding problem, we shall have, finally,

+ r^ r^ VDy dx-\- T' T" VDx dy

398. Now it will appear, as in the preceding problem,
that because the part of (^Sunder the sign of double integra-

tion cannot depend upon terms which relate to the limits

only, these two parts must be independent, and that L and

M must severally vanish. Therefore we see that here, as

in single integrals, the differential equation from which the

general solution must be obtained will be the same whatever

may be the particular conditions which may be imposed at

the limits.

Let us then examine the equation L —o. It is easy to see
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that if we can regard the quantities dz^ Dy and Dx at all the

limits as independent, the four terms in L will be also inde-

pendent, and we shall be obliged to equate them severally to

zero. Hence, using k as in the last problem, we must have

/ / ^kdzdx = o, / / 'Vridsdy = o,

\
(i6)

,
.- ri'-VDydx = o, r- r-VDxdy = o,

t/xo /yo Ixq Ugo
-^

J

in which the first two equations give the same conditions as in

that problem.
Now in the third equation we must remember that Dy is

perfectly in our power for every point of the upper and lower

portion of the projected contour, and is in fact what might be

termed ^y^ if we had not agreed to suppose x and y incapable
of receiving any variation

;
so that this integral will not cer-

tainly vanish unless we have/ F= c

In treating the fourth equation, we must remember that

Dx^ and Dx^ do not, hke Dy^ and Dy^, denote an infinity of

quantities, but signify only one each, so that they are each

arbitrary constants, and we must have/ / Vdy
—

o, and we

cannot make any further reduction, because the integral is

definite, and none of the quantities involved are in our power,

F= o.

We must then, in the present case, have the equations

k^o, V=o, Fp = o, £'Vdy = o; (i?)

the first two equations holding along the upper and lower con-

tour, and the last two along the ri^/it and left. Or, as in the

preceding problem, the condition Vqdx — Vpdy = o must hold

for the entire contour
;
while we now add that the condition



PROBLEMS LVII. AND LVIIL RESUMED. 46 1

F= o along the entire contour will satisfy all the remaining

requirements of the limits, and will be necessary for all but

the right and left portions of the contour, which might, per-

haps, be satisfied by some other condition also.

399. But as it is necessary in the case of curves to im-

pose some manner of restriction upon the extremities in

order that ^may become a maximum or a minimum, so in the

present case it is easy to see that the required surface cannot

possess a maximum or a minimum property unless its contour

be subjected to some sort of restriction.

Now the most general case which will arise is that of our

problem—namely, where the required surface is to have its

contour upon t)ne or more given surfaces—and this case we
will now proceed to consider.

4-0 0« Let the equation of any one of the limiting surfaces

be of the form

dZ = PdX^QdY or Z = /(X,F), (18)

and let us first suppose it to be touched by a portion of the

upper contour. Now if we pass a plane parallel to that of

yz, at any distance x from that plane, the sections cut

from the required and the limiting surface will be two plane

curves, which meet, and the equation of the curve cut from

the limiting surface is dZ = QdY, while that of the other is

ds = qdy. Therefore, so far as these two curves are con-

cerned, we may regard y as the independent variable, and x
as a constant, if it appear at all in their equations. Hence,
when we change y^ into y^-\- Dy^, we may employ precisely the

same reasoning as in Art. 69 ;
so that, since Q would replace/"'

in that article, we shall, neglecting terms of the second order,

have, as in equations (2), Art. ^6,

Sz,= {Q-q),Dy,,

and a similar equation will hold for the lower limit.
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In like manner, for the limiting surface at the right, by

passing a plane parallel to that of xz at any distance y from

that plane, we find

and a similar equation for the lower limit.

Or to render these equations more intelligible, we may
write

or, to the second order, we shall have
#

ly. =iy^i^Q-g)Dy+'-{T- t)Df- SqDy\,^
y (20)

£"& =£' I {P-p)Dx\\^{R-r)Dx'-SpDx

401. Now since equations (19) restrict the independence
of ^z and Dy^ and dz and Dx at both limits of y and x, equa-

tions (17) will no longer hold true. But from (15) we may
write

^ =£?ly''^ VDy)dx+ l^jj;;\V^6.+ VDx)dy = o;{2,)

and eliminating Sz by (19), we have

+rX'' ^+ Vp{P-p)]Dxdy = o. (22)

Now it is evident that the quantities By^, By^, Dx^ and Dx^ are

entirely independent of one another, as the fact that the con-

tour is to be confined to certain surfaces in no way restricts
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US in varying the form of the projected contour. Moreover,
as before, Dy is completely in our power for every point of

the upper and lower contour, while, for either limit of x, Dx is

an arbitrary constant. Therefore, by the same reasoning as in

the former case, (22) must give the equations

V^k{Q-q) = 0, £'\V+V^{P-p)]dy^O; (23)

the first holding along either the idpper or lozver portion of the

contour, and the second along either the right or left. ,

But >^ = Vq
—

Vpj/x ;
and also

tl2 = pdx + qdy and dZ= PdX+ QdY,

the first being the equation of the required, and the second of

any limiting surface
;
and since along their intersection ;r, j/, ^

and X, V, Z are identical, we must have along such intersec-

tion

dy _ P-p
pdx -f- qdy = Pdx -\- Qdy, dx Q — q

Substituting this value in k, and then the result in the first of

equations (23), the conditions at the hmits finally become

V+Vp{P-p)+Vq{Q-q) = o,-]

r'\V+V,{P-p)\dy = c
(24)

To discuss the terms of the second order we must employ

equations (20) in the place of (19), proceeding as before, and

setting aside all terms of that order which may arise. Then

we shall have the same terms of the first order as before,

while those which we have set aside must be added to the

terms of the second order which we have already exhibited

in equations (i), (5) and (13), thus rendering the complete
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terms of that order still more complicated, and the deter-

mination of their sign a much more hopeless problem than

before.

402. Now the first of equations (24) must hold along the

entire upper and lower contour, and may represent as many
distinct conditions as there are limiting surfaces touched by
these portions of the contour. The second of these equations
holds along the right and left contour only, and will be satis-

fied if we suppose the first to hold for these portions of the

contour also, because along these portions, being parallel to

the plane of yz, q and Q are equal, so that Q — q will vanish.

The first condition, then, is necessary for the upper and

lower, and will satisfy the requirements of the limits, should it

hold throughout the entire contour, although the right and
left portions may furnish some additional condition.

4-03. Let us now apply the foregoing theory to Probs.

LVII. and LVIIL, beginning with the former.

Here it is easy to see that equations (24) give the condi-

tions

' +^ + ^^ = °' ^(i^i^^^-- (^s)

The first equation denotes that the required surface must
meet at right angles all the limiting surfaces which are

touched by its upper and lower contour, and the same condi-

tion might also prevail along the right and left portions,

although we cannot assert that the second of equations (25)

might not be satisfied in some other manner. In general,

however, the projected contour will be a closed curve, in which
case the right and left portion reduce to points, causing the

second equation to disappear, and the first to hold along the

entire contour.

As before, if we could obtain the general integral of equa-
tion (10), Prob. LVIL, which would involve a number of arbi-
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trary functions, not exceeding two, it would be necessary to

determine these functions in such a manner as to satisfy equa-
tions (25).

404-. Let us now turn to Prob. LV^III. Here equations

(24) become

V — mx{P—p) — my{Q — q)\
= o^

H'v^n - 1

1
7; — mx{P— p)\dy — Q.

(26)

These equations will both be satisfied hy v = o throughout
the entire contour, which supposition would, as before, lead

necessarily to a conic surface. Neglecting this supposition, we
have

V — mx{P— p)
—

iny{Q
—

q)
— o, qj = 2 —px — qy.

Whence, substituting and transposing, we have

- m{Ppx+ Pqy) + {m — i) {px-^qj) ^ — z.

Adding mz to both members and transposing, we have

m{z — Ppx — Pqy^ = (m — 1) {z
—px — qy).

Whence
z —px — qy ni

z — Ppx — Pqy fn
(27)

which shows that if at any point of the upper or lower con-

tour tangent planes be drawn, the first to the required and the

second to the limiting surface, the portions of the axis of z

comprised between the origin and these planes respectively
will be to each other ?iS mis to m — i.

406. Having now reached the general discussion of the

problem, let us consider more particularly the mode of deter-
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mining the arbitrary functions in the various cases which may
arise.

First suppose the contour to be a fixed boundary, and let

it, for example, be a circle of radius a, having its centre on the

axis of z, and its plane parallel to that of xy at the distance

c. Write — = / and n = —-—
. Then, from the equation of

X I — m
the contour and from the general equation of the surface,

which now becomes

z = x^F{t) + x/Xt) = x^F+ xf, (28)

we have

/ {^+y) = ^\ /
=^- = I, / ^ = c,

' ' a *

(29)

Having solved the last equation for/', we may then omit all

signs of substitution, because the form of /' must remain the
same for all values of x and y belonging to the required sur-

face. Hence we have

/r+? (
^ _ a:^F

\^~
a

\ i/(T+7^)^(*
(30)

Now restoring the value of /, and substituting for/' in (28),
we obtain

As the lower limiting values of y furnish the same equations
as the upper, we have no other condition by which to deter-
mine F, which may therefore be assumed arbitrarily.
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Next suppose two circular arcs situated as before, having
radii a and a'

,
and that the given contour is to consist of a

portion of the upper arc of each circle joined by any two

curves whose projection^ on the plane of xy shall be the

right lines x — x^ and x — x^. Then y.^ and y^ belong to these

arcs only, and we obtain, as before,

=/

4/(1+0

V(l+/=)»
' VI +1'

(32)

Solving these equations for/' and F, and omiting the signs of

substitution for the sanle reason as before, we have

Substituting these values in (28), we obtain

z(aa'^ - a'a^) = Qa'^
-

ca^) Vx'+/+ {ca
~

ca') V(?+7)'^.(34)

Thus we see that the two functions will be determined by
the circumstance that the required surface is to pass through
the two arcs, and we cannot impose any further conditions.

Unless, therefore, the remaining portions of the fixed bound-

ary be so assigned that they would lie necessarily upon this

surface, the conditions of the problem cannot be all satisfied.

We shall, however, have occasion to consider these functions

again presently.

406, Let us next suppose that the required surface is to

connect two planes whose equations are

2 = ax -\- dy -{- c and ^ = a'x+ d'y -|- ^'. (35)
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From equation (5), Art. 372, observing that

m±2_^ and n = -^~, (36)

we have v, or the numerator of (27), equals

fn — I
^F, (37)

while the denominator of that equation must become either

c or c' . Hence (27) furnishes the conditions

/Vx
IVo

{m + 2)x'^F= mc, / (^+ 2)x'^F= mc', (38)

We have also, along the upper contour,

z — {a-[- bt)x A-c, z = x^F-\- xf\ (39)

Eliminating z and x^F between these and the first of (38), we
obtain

2c
'' =

(m-^2){f -a~bt)
'* (4^^

and substituting this value in the first of equations (38), we
have

{f - a — btf = — {m-\- 2y-'^c''-^ F\ (41)

and in like manner we find, along the lower contour,

{f -a' - b'ty^
= —

(//^ 4- 2)1 -nc'n-\F, (42)

fi I

If we solve (41) and (42) for/' and F, and put / for ,
we

iz

shall obtain
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t —
^/p _ ^p

'

\ (43)

, , s . \a-\-bt — a' — b't\'^ \

F=m(m+2Y-
\ \^,,_^,^ f

•

J

Although in (4 1) and (42) f belonged respectively to the

upper and lower projected contour only, in (43), for the rea-

son already explained, it may belong to any point whatever of

the required surface. Hence equation (28) becomes, after re-

storing the value of /,

_ c'^iax -^ by)
— cP(a'x + b'y)^ ~"

c'P — c^

, ^ ^ \ax-\-by — a'x — b'y}'^ .
^+ m{m + 2)^-1

I ^^^-^.^
_

^^^

-^
[.

(44)

407. It will be remembered that, in the case of maximiz-

ing or minimizing any single integral U, it is necessary, in

order to render the method of variations applicable, that no

element of U ox oi STJ shall become infinite within the range
of the integration ;

and it will readily appear that when ^is a

definite double integral the same principles will apply, since

each element of U is treated precisely as before. Now from

(37) we have, in the present case,

U=r'r\'^ dydx
—
fj'f^' c^^^nrnpyn dy dx, (45)

fyi I 2 "^fn

where C = —
. But nm =

;
so that it will appear,m — \ \ — m ^^

upon a little reflection, that nm must be negative except when
m lies between zero and unity. Hence when x ^ o, x'^'^ must
become infinite

;
and it will appear that to prevent v from be-

coming certainly infinite, or at least indeterminate, we shall
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be obliged to make F vanish throughout U^ which will give
z — xf\ thus bringing back the conic surface, in which we
must, as V is zero when x is zero, still reject all values of m
which would render v^, ^m-i qj. ^m-2 infinite, since the second

and third of these quantities occur respectively as factors of

the terms of the first and second orders.

In this case, there being but one function to determine,

the first supposition in Art. 405 would determine the surface

completely, requiring a right cone ; so that

In Art. 392 f would, as we have seen, remain indeter-

minate, and indeed it is easy to see that we could have no

finite minimum while the limiting values of z remain variable.

In this case equation (27) is inapplicable, since in obtaining it

we assumed that v did not vanish.

Problem LXI.

4-08. It is required to determifie the form of the surface

zvhich will maximize or minimize the expression

u--£?fy!' ^/+? ^yd- =£?£' vdy<^'- (I)

Here

and observing that/, — / =: s, the equation M = o will reduce

to

q'r -2pqs+p''t = 0. (3)

This equation may be integrated by the method of Monge ;
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and adopting the notation of De Morgan, page 719, we have,

putting z for u,

R = q\ ^=-2/^, T=p\

a = q^df-{- 2pq dy dx -\- p^dx^, V— o,

PG = q^dp dy+ p'dq dx, -^ — — ^, dz = pdx -f qdy.

Now if a vanish, we see from the last equation that dz will

vanish also, and vice versa; and by theory cr will also vanish.

Substituting j.i
dx for dy., the equation o" = o gives qdp

—pdq= o.

i>Whence we may write - = —f{z) — —f. Again, when or = o,

we have

dy — f^dx or dy-\-^dx or dy — fdx-=o, (4)

where we must remember that / is to be regarded as a con-

stant, because dz is zero or ^ is a constant. Hence

y—xf= F{z) = F.

The complete integral of (3) is, then,

y = xA^) + F{^) = ^f+P, (5)

where/ and F are any functions of z whatever.

409. Let us first suppose the limiting values of x^ya-ud
z to be fixed, or that the surface is to pass through some fixed

boundary, and let us require, as a particular case, that two

portions of this boundary shall be given by the equations

/v+/)=^s r^=r^, (6)

/V+/)==^'^ /%./--$. (7)
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Then, for the upper limit, we have

zx _ a a am

^,^1.^ i/:+f;
^-" + ^m

r I + =^, r I + ^m

az
y =

Vm'-\-z'

Therefore, by (5), we have, for the upper Umit,

az __ ^^^ _ I p^ (g^^

^/W^z'' Vm' + z'

Similarly we obtain, for the lower limit of j,

a'z _ a'm'f

Vm'''+ z' Vm'
+ F,

(9)

Solving for / and F, remembering that the results will no

longer refer to the contour only, but will hold for every point
of the required surface, we shall obtain

a Vm''' -{-z"
- a' Vnf+f=z

am ym'^ -\- z^ — a'm! Vm^ -\- ^

„_ aa\m — m-'^z

am Vjn'^ -\- z^ — a'm' Vm^ -\- ^

Now if the surface determined by the substitution of these

values of /and i^in (5) do not necessarily fulfil all the require-

ments of the problem regarding other portions of the fixed

boundary, we conclude that these conditions cannot all be

satisfied.

410. Next, suppose we give merely the limiting values of

X and y^ those of z remaining variable ;
that is, suppose we
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give merely the form of \h^ projected contour, or of the cyHn-
drical walls. Then we see from (2) that equation (12), Art.

390, will furnish the condition

qdx — pdy
— o ; (lo)

which shows that the required surface must meet these walls

at right angles.

To discuss the form of the functions, let us suppose the

wall to be a right circular cylinder, having the axis of z as its

xdx
axis. Then along the projected contour we have dy ^ ,

y
and (10) gives, by substitution,

px-\-qy = o. (II)

But by differentiating (5) with regard to x and y respectively,

we find

— xf y xfA-F
px = - / , qy = .

,

- =
;;

'

.

Hence (11) gives F^o; and (5) becomes y = xf, which may
evidently be put under the form

The function /~* will remain undetermined unless we as-

sume some other form for a portion of the cylindrical wall.

Suppose, then, another portion to be elliptical, giving

bx dx
-^

ay

Then along it we have, as before,
#

bpx -\- ^qy = O' (13)



hold
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Problem LXIL

413. It is required to determine the form of the surface "juhich

will maximize or minimize the expression

/ / \z — px — gy) dy dx = I ^vdydx, (i)

while at the same time the vacations of p and q are always to be

so taken that the expression

may always have an assigned constant value.

This is evidently a problem of relative maxima and mini-

ma, and we can treat it by Euler's method precisely as in the

case of single integrals. For, supposing first the limiting val-

ues of x, y and z to be fixed, the reasoning of Bertrand, ex-

plained in Art. 93, which the reader is supposed to re-peruse,

can, in the following manner, be extended to this problem.
Since the terms at the limits vanish, we must have

/ / 'Svdydx or / / ^VSzdydx = o.
e/Xo e/Z/o *Ixo <^2/o

r^ r^Sv'dy dx or f' H" V'dzdydx^ o ;

(3)

'Xo t/yo vxo t.fyo

where

77 — 7, _ ^!i _ fl^ V —
'?)

' — '^^'^ —^- (a\"^-^^
dx d/

^ ~^"
dx dy

'

^4^

Now suppose the required surface to have been obtamed, and

on it select any two portions in such a manner that for every

point of either portion, when that portion is considered sepa-

rately, both V and V may preserve an invariable sign. Then
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vary z throughout these portions only, leaving the remainder

of the surface unvaried in form. Also make the sign of dz

invariable throughout each, giving to it in the two portions
like signs when those of V are unhke, and vice versa.

In this way, by giving suitable values to Sz, we can, as in

Art. 93, satisfy the first of equations (3). But the second of

these equations may be written

X X '^'^y''^ = X. Jy, fVS.dydx, /=f ; (5)

the variations of z being taken as before
;
so that unlessf be

a constant, we can certainly effect that the double integrals
taken throughout the two portions shall be numerically un-

equal, and hence the second of equations (3) would not be

satisfied.

The remaining reasoning, by which the necessity of Euler's

method is established, is precisely like that of Art. 93.

If the limiting values of x, y and z are also subject to varia-

tion, the method of Euler is still equally applicable. For sup-

pose the required surface were to be bounded by certain

cylindrical walls or by certain surfaces. Then, since we are

not compelled to vary the limiting values of x, y or ^, the re-

quired surface must evidently be of that kind which will sat-

isfy all the conditions of the problem when the contour is to

be fixed, the only question being to determine the conditions

which must hold along the contour
;
and since, in double as in

single integrals, the fundamental equation obtained in discuss-

ing any problem of absolute maxima or minima is the same
whatever be the conditions which are to hold at the limits, the

appHcability of Euler's method is apparent, as in Art. 96.

4(4. We see, then, that we are in the present case to dis-

cuss the conditions which will maximize or minimize abso-

lutely the expression
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^= £?J2'^^ -P^-qy^a •//+?) dy dx

Here

F,= i, Fp=-;r +—^=, F^ ==__;/+_^£= ; (2)

SO that, writing ^ z= — —
,
the equation M = o gi^^es

^V - 2J>qs +/V = ^(/'+ /)». (3)

This equation is integrable by the method of Monge. See

Boole's Diff. Eqs, Chapter XV., or De Morgan's Diff. and

Integ. Calc, page 719. Adopting the notation of the latter, we

may write

Zp_ ^' C_ 2/^ 7-_ / jr_r

yp -\-q)^

^ _ q\dq dy - dpdx) + 2pq dqdx , ^ ^^
(7+??

+ '

dz ^= pdx -\-qdy.

Now the condition a: = o renders dz zero, and also gives

dy — }xdx =:. Q\ so that we may write

ft dx= - ^+/.(^) ^-y +/.. (A)
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Now substituting pidx for dy m. g and r, which must also be-

come zero when a is zero, we obtain

Integrating these equations, we obtain

_Z__z = -b r^dx^ flz\ --=i= = -bx+fAz\ (B)

Now by squaring and adding equations (B), and substituting

from (A) the value of / - dx, we shall obtain the integral

sought.

The complete integral of this equation is, therefore,

L = (^ +/(^))'+ (j/ + F{z)y = {x +/)' + (j. + F)\ (4)

415. This equation is easily interpreted. For suppose a

circle whose radius is — ; and while keeping its plane always

parallel to that of xz^ let its centre move along some curve

in space whose equations shall be

X^-f. Y=-F, Z^z, (5)

Then it will readily appear that (4) represents the equation of

the surface generated by the circumference of this circle as it

moves along the given curve, and that when we shall in any
particular case have determined the form of the two arbitrary
functions, / and F, we shall know the nature of the curved
directrix of this surface. When the contour of the surface is

fixed, the functions must be determined in accordance with
this condition.
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If the bounding walls only are to have a given form, equa-

tion (12), Art. 390, will give

(/ ^P"+ / - (^Q¥x = {x y/ -^q" - ap)dy, (6)

and/ and F must be determined so as to satisfy this equation.

When the required surface is to be limited by one or more

given surfaces, the first of equations (24), Art. 401, which is

the only one of importance, will become, by substituting

from (2),

^/ + q"
^^^

and/ and F must then be determined in accordance with this

condition.

416. Of these cases we will consider but one—that in

which the required surface is to be limited by two planes,

each passing through the origin, and having for their equa-
tions

z ^ ex -\- c^y, 2^=- c'x -\- c^y, (8)

In this case (7) will give

l''\cp+ c,q)
= O, /\j>+ clq) = a (9)

But from (4) we obtain

/=- -+^

? = -
(10)

(^+/y.+0'+^)^/j

Hence, by the use of (8), equation (9) gives

/'\^J^cf+c,F)^o, /%J^c'f+c,'F)=o. (II)
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From (5) these conditions may be written

Z=cX-^c,Y, Z=c'X+c/Y. (12)

From these equations it at once appears that if there were but

one limiting plane, the centre of the generating circle would
be compelled to remain always in that plane, and that in the

present case the centre must move along the intersection of

the two limiting planes. This will give an oblique cylinder

having a circular base, the line in which the two planes inter-

sect being its axis. We can, of course, determine / and F in

the usual way, thus obtaining, from (11),

cc^
— c c^ cc^

— c c^

Moreover, when in any particular case we have determined

the functions / and F^ we shall then be able to determine also

the constant ^ or — —
. For, as in the case of single integrals,

we have the condition that one of the double integrals is to re-

main constant, and we may suppose a definite value to have

been assigned to it.

4 17. In considering the terms of the second order the

same reasoning will hold as in the case of single integrals.

For the variations of ^,/ and q are subject to a certain restric-

tion which we cannot explicitly express, and the method of

Euler will cause the terms of the first order to vanish whether

these variations are restricted or not. But the variations are

still restricted, and when we come to the terms of the second

order it is conceivable that even when they do not indicate a

maximum or a minimum, the variations being unrestricted,

they would do so if we could employ such variations only as

would permit one of the double integrals to remain always
constant, which, however, we have no means of doing. But
when these terms indicate an absolute maximum or minimum
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—that is, for all systems of variations—there would seem to

be no doubt as to the existence of a relative maximum or mini-

mum also.

In the present problem, when the limiting values of x and

y are fixed, the terms of the second order are the same as in

equation (15), Art. 412, only multiplied by a. Hence we may
in this case conclude that t/will be a maximum or a minimum

according as a is negative or positive.

Problem LXIII.

4- (8. It is required to determine the form which a surface of

given area whose edges are in some manner confined must assume

in order that the depth of its centre ofgravity may be a maximum.

The given area is

and assuming the axis of z vertically downward, we have, for

the depth of the centre of gravity,

which is to be a maximum. Or, since A is to be a constant, we

may say that /
'

f^^z V i -\- p"" -\- q" dydx is to be a maximum,

while
J^ J 4/1 +/' -\-q^ dydx is to remain constant. Hence,

employing Euler's method, we may write

^=X?fyy -
^) ^^i+f+ fdydx =£;£vdydx. (I)
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Here F^r.: |/i -[-/ + ^^

Y ^ (^
- d)p p ^ {z-d)q^

(2)

Hence the equation M= o reduces to

i+/ + ^^-(^-^^)Ki+/)^-2/^^+ (i+/)^}. (3)

This equation is not integrable ;
but calling R and R '

the

principal radii of curvature, and estimating the signs properly,

(3) may be written

because

=r —: — - y (4)
R R' {z-a)Vl-\-f+ q'

Equation (4) shows that the mean radius of curvature of

the required surface at any point is twice the normal ex-

tended until it meets the plane whose equation is ^ = <^. The
same equation also indicates an analogy between this surface

and the catenary, which gives, as we have already seen, the

solution for a similar problem relative to plane curves. (See
Art 282.)

If the contour, instead of passing through some fixed

curve, be confined to certain cylindrical walls only, we must

have, from equation (12), Art. 390, qdx—pdy^=^o, showing
that the surface sought must meet these walls at right angles.

When the edges of the required surface must be upon one

or more given surfaces, the equation of any one of which is

dZ= PdX -\- QdY, the first of equations (24), Art. 401, will

give the condition i -{- Pp -\- Qq = o, showing that the required
surface must be normal to the limiting surfaces.
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Problem LXIV.

4- 19. It is required to detennirie the form of the surface whose

area shall be a minimum, andwhich shall cover a given volume on

a horizontalplane.

Here, since the given volume is / / zdydx, we may
write at once

Here

and the equation M = o will give

(I + qy- 2pqs+{l +f)t ,l_ ^ ^

V^T+f + T? ^ *

^^^

This equation, which is not integrable, gives, as in the preced-

ing problem, by a contrary estimation of signs,

R+ J'
=

a- (^

Hence the required surface must be such that its mean cur-

vature at every point may be constant.

4-20. We already know that it will be necessary to the

existence of a maximum or a minimum that the contour shall

either be fixed or rest upon some surface or surfaces, the cal-

culus of variations affording in the first case no further equa-

tions; and we are unable to integrate (3). But when, in the
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second case, these limiting surfaces are certain cylindrical
walls normal to the plane of xy, equation (12), Art. 390, gives

qdx—pdyz=zo^ (5)

the meaning of which we know.

When, however, the limiting surfaces to which the contour
is to be confined may have any given form, the first of equa-
tions (24), Art. 401, gives

^ Vi +/+ ^^
- a(i +Pp+ Qq) = o. (6)

Suppose, for example, the limiting surface to be a plane whose

equation is ^ = ^ Then (6) will give

(7)

Hence the angle A which the tangent plane to the required sur-

face at any point of the contour makes with the plane of xy

must be a constant, since the first member of (7) is or
sec A

cos A.

When h — o, we must have cos ^ = o, and the required
surface meets the plane of xy, and is normal to it. The sur-

face of a hemisphere of radius 2a would evidently, in this case,

satisfy all the conditions of the question so far as the terms of

the first order are concerned ;
but a satisfactory investigation

of those of the second order would probably be impossible.

When the limiting values of x and y are fixed, the terms of

the second order may be written

and, as in the case of a spherical surface, the radius is 2a, and

is positive, we may conclude that if we vary the form of the

surface only, the circular base remaining unvaried, the surface

will be a minimum.
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421. To give a more comprehensive view of the method
of M. Sarrus in the treatment of double integrals, we now pro-
ceed to a more general problem. But the reader who desires

may omit the discussion of the following example.

Problem LXV.

// is required to maximize or minimize the expression

U:= I I Vdy dx, where V is any function of x, y, z, p, q, r, s,

and t.

It is evident that, supposing the limiting values oi x and j
to be also variable, we shall have

dU= r^ r^VDydx+T" r^VDxdy

+ Vr^r-^ Vs<^s + Vt^t]dydx = o, (i)

Now all the terms except the last three are to be trans-

formed and arranged as in equation (15), Art. 397, so that we

have to consider these three terms only.

422. By equation (3), Art. 377, we have

*yxo tyyo cix



486 CALCULUS OF VARIATIONS.

Moreover, by equation (4), Art. 378, we have

+eAo / W'^^-^^^-^+eAo / y^^y^'^r)^^^^^' (4)

PXi tyo px^ lyo

-i. / ^^yVrSqdx-J^^ I y,{y,Vr),Szdx. (5)

Now we must observe that every y^ refers to the contour

only, and hence it varies with x, but is independent of the

general values of jf. Hence

{Vry.y = Vry,.^ F,% (F,j,X =yxVrr (6)

Substituting these values and collecting results, we may write

L L Vr^rdydx^J^^ l^ \Vry..+ 2Vr%+Vr,{y.r\Szdx

+X L Vr{y.rSgdx-l^ J^^ Vr'S.dy+l^ l^ V^Spdy

-L L ^'ry.^'^L Jy, Vr'Szdydx. (7)

Again, by equation (3), Art. 377, we have

rf^v/l?-dydx =

n^x PVx /«i PVx /»^i fVx

-L X V^'S'^dydx+ l^ l^ VMdy-l^ l^ V.y.Sgdx.{Z)
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By equation (5), Art. 379, we have

X'X" ^-'^''y '^^ -£: ly^'^d'' ' (9)

and by equation (6), Art. 380, we have

/'X>-.f*=-/T'"..''*+/7."".'-

-/'•r'-.f*=/"x>.."*-/7:''.*-

Hence, collecting results, we have

Lastly, by equation (5), Art. 379, we have

- Vt,-^-dydx^ / Vt.Szdydx- I Vt^^zdx.

Whence
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Adding these results, and also the second member of equation

(15), Art. 397, we finally obtain

+ / / VDydx-\- / VDxdy '

4-23. Now when ^is to be a maximum or minimum, we
must, as before, have M — o irrespectively of the conditions

which are to hold at the' limits. This equation, which must
subsist for every point of the required surface, will be in gen-
eral of the fourth order, and its solution, when any exists, will

not contain more than four arbitrary functions.

Next, if in the terms at the limits we regard the quantities

Sz, Sp^ dq, Dy and Dx as independent at each limit, we shall

evidently obtain the following system of equations :

(14)

Vry„+ Vr,{yif+ (2 F/ - V^)y^ +V,-V/-Vt, = o,

Vr(.yxY-Vsy:r+Vt=0,

Vp-V/-Vs, = o, F, = o, (15)

F.-F-^. = o. (16)

V^o,
J^^ Vdy=o: (17)
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where (14) and the first of (17) hold along the upper and lower

contour, (15) and the second of (17) along- the left and right

portions when they exist, while (16) holds only for the four

corners, or the junction of the different portions of the con-

tour, the differentials jFa:, etc., at these points being taken with

reference to that one of the two intersecting portions which

we may happen to be considering.

But under the present supposition the total number of

equations at the limits would be (16), whereas we have at the

most not more than four arbitrary functions with which to

satisfy them
;
so that, as before, we must impose some restric-

tion upon the contour which will reduce the number of these

equations.

424. If we suppose the form of the projected contour to

be fixed, equations (17) will disappear, and we shall have but

twelve equations at the limits
;
and if, in addition, we suppose

the left and right portions to be wanting, equations (15) and

(16) will also cease to exist, and we shall have but four equa-

tions at the limits. In this case, therefore, in which \}i\Q pro-

jected contour consists merely of two curves which meet, we

may reasonably suppose that a complete solution might be

possible.

We can render equations (14) somewhat more symmetrical.

For differentiating the second, regarding 7 as a function of x,

as indeed it is along the projected contour, we obtain

+ {Vt-Vsy.+ V/ = o. (18)

Now from this equation we eliminate f^x by the first of equa-

tions (14), obtaining an equation involving jx with its second

and third powers. Then from this new equation eliminate

successively (jxT and (fa^Y by means of the second of equations

T4), the work presenting no difficulty whatever, except its
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length. By these operations, and retaining the second of

equations (14), we shall have

-^\VtVr,^VlV^-V,-Vr')^Vr{V,'^ZV,-2V^)\dy^o,

Vrdf- V,dydx-\- Vtdx'^o.

(19)

4-25. It is easy to show that conditions (14), or rather (19),

must hold also along the right and left portions of the con-

tour when they exist. For since along these portions dx = o,

the second of equations (19) will give Fi- == o
;
so that F^^ = o,

and then these three conditions will cause the first of equa-
tions (19) to reduce to

Fp-F/-F,,=:o.

For the four corners of the required surface we merely

join to equations (14) or (19) equation (16).

We might in the same manner as before discuss the case

in which the required surface is to be limited by any given
surface or surfaces. But as this examination would not prove
useful, because of the scarcity of actual problems, and as it is

believed that the reader will now be able to investigate these

cases for himself, we shall proceed no further in the discussion

of this subject.

426, We have now seen that the method of M. Sarrus

enables us to investigate in a systematic manner the condi-

tions which must, under any supposition, 'hold at the limits in

order that U may be a maximum or a minimum
;
and so far

as this method itself is concerned, it should be regarded as

satisfactory and sufficient. But while it gives the conditions

which must prevail at the limits, if there be any solution, it

still remains for us to determine whether or not these condi-

tions can be fulfilled, and we shall find at this point that the
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theory is much less satisfactory than in the case of simple in-

tegrals. For supposing V to contain differential coefficients

of z to the order n inclusive, we know that the equation M^o
will be in general a partial differential equation of the order

2n. Now we are rarely able to integrate an equation of this

class, and are not certain that all such equations admit of any
solution at all in finite terms

;
and even if we suppose a solu-

tion to exist, we cannot tell a priori how many arbitrary func-

tions it must involve, all that we know being that the number
of these functions will not exceed that which marks the order

of the differential equation in question. Moreover, even if we
knew the number of these functions, we could not say how

many conditions ihey might be made to satisfy, since we would

not know what should be the quantities under the functional

sign. Also, when we have obtained an integral of one of these

equations, we cannot be always certain that the solution is of

the most general possible character.

427. From what has been said, it will appear that we can-

not, as in the case of simple integrals, assert that because the

equation iI/= o is of the order* 2??, the general solution can

be subjected to 2n conditions at the limits
; although the ex-

amination of particular cases, as well as the analogy of simple

integrals, would lead us to infer such to be the case. If, for

example, we require that the surface given by the equation
M — o shall pass through 2n distinct curves, or shall have its

edges upon 2n surfaces, we do not know that these conditions

can be satisfied, but our inference that the}^ can is supported

by the following additional considerations.

In an equation of the form M = o we can assign arbi-

trarily the values of z corresponding to x = o or to some
function of x and y equals zero, and also those of the first

2n — I differential coefficients of z with respect to either vari-

able, X for example. Now by assigning the values of z we

compel the surface to pass through one given curve, which
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would be all that we could do in the case of a partial differ-

ential equation of the first order. When the equation is of

the second order, we can, as before, make the surface first

pass through some curve, and then, by suitably assigning the

value of/, can fix the position of the tangent plane along this

curv,e
;
that is, can make the surface pass through two curves

which are consecutive.

In like manner, when the equation is of the order 2n, we
can effect that the surface shall pass through 2n curves which
are consecutive one to another

;
and since this can be done so

long as. the curves are indefinitely near one another, we may
infer that it would also be possible if the curves were sepa-
rated by finite spaces, although we must be careful not to

speak with too much certainty upon this point.
The last two articles are due chiefly to Moigno and Lin-

delof. See their Calciil des Variations.

428. The equation M= o will not, however, always rise

to the order 2n. If Fbe a function involving x, y, z,p and q

only, thus naturally makingM oi the second order, it is readily
shown that M will not rise above the first order if V have the

form

V= fix.y, z) +flx,y, z)p +flx,y, z)q, (i)

and in this case only. But if F contain x^y, z,p, q, r, s and /,

giving usually M oi the fourth. order, it can be shown that to

prevent M from rising above the third order, it is necessary
and sufficient that, A, B, C, D and E being severally functions

of x^y, z,p and ^, F shall be of the general form

V=.A(rt-s')^Br-\-2Cs-^Dt-^E. (2)

Moreover, it is shown that in both these cases the equationM—o cannot in reality rise above the order 2n — 2. See the

work of Prof. Jellett, page 249.

It will be remembered that the corresponding case for
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simple integrals arises from the fact that the integral / ^Vdx

is capable of some reduction by integration, and should be

reduced before applying the calculus of variations. But we
cannot extend the analogy. For in the present case no such

reduction is, in general, possible.

Section IV.

EXTENSION OF JACOBPS THEOREM TO THE DISCRIMINATION
OF MAXIMA AND MINIMA OF DOUBIE INTEGRALS.

429, We will now present a mere outline of the method
of extending the theorem of Jacobi to double integrals, con-

/

sidering the case in which F is a function of x, y, z, p and q

only, and supposing, as usual, that the limiting values of x, y
and z are fixed.

Now since the terms of the first order must vanish, if U is

to become a maximum or a minimum, we shall have

6U=- r^ r^
\ V,M+2 V,p6z Sp+ 2 F^3 Sz dq

+2F^,(^/d^+Fpp^/+ V^^6q''\dydx,{i)

Now we can change the form of (J C/" thus:

6U=

\£'J^^\V,,Sz+V,,6p+V,^6q-{V,,Sz+V^p6p+V^,dgy

-
( Vzq Sz + Fpg Sp + F^g Sq)^ ]

Sz dy dx. (2)

The truth of (2) can easily be verified by integrating

once by parts each of the quantities within the accented pa-
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rentheses, the first set with respect to x and the second with

respect to y, remembering that the limiting values of z are

fixed. Thus, for example,

Proceeding thus with each term, we shall obtain the same

form for (5' C/ as in (i).

Now let

Then (2) may be written

-
( Vp<i^P + Vq<i ^^). \

^^ dy dx, (3)

430. Thus it will appear, upon comparing equation (3)

with equation (7), Art. 129, that SU has been put under a

form which \ye may call Jacobi's form for two independent
variables. Moreover, it will appear, as in the case of simple

integrals, that, because the limiting values of ;r, y and z are

fixed, we must have

^U='-£'£'SMS.dydx; (4)

SO that we have

m=BS, -
(Fpp<y/+ V^^Sq)'

- {V^^Sp^ V„Sg), (5)

Now let u be such a quantity as will satisfy the equation

Bu - (Fpp«' + V^^u)'
- {V„u' + V,^ul = o. (6)

Then if Sz can be made equal to u or ku throughout the whole
or a portion of the double integral, k being an infinitesimal
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constant, SU \.o the second order can be made to vanish, and

we would infer, as before, that U is neither a maximum nor a

minimum.
Now in (3) put ut for S3. Then the resulting equation

may be written

w=
\^But-\Vpp{uty+Vp^{ut)X-\Vpq{uty-{-Vq^{tit)^\^ |

u.{^)

But because (6) is true, W is integrable. For, multiplying

(6) by ut and subtracting from f'Fas in Art. 135, we have

- j^=: u{ Vppiutyy- ut\ Vppu'Y+^{ v^^(ut)x- ut\ v^^ux

-\-u\ Vpq{tay]-ut\ V^q?c'},+ u{ V^^{ui)^\-ut\ Fg,?/J,. (9)

Now proceeding with each pair of terms precisely as in Art.

135, it is evident that the first and last will give no trouble,

and we shall also find that no difficulty will occur in the sec-

ond, but tt''' and u^ will merely be replaced by z//. Proceed-

ing then as indicated, we shall ultimately find

w^ - {{v,,f+v^,0ux-{{v^,^' + v,,ty\,. (10)

Substituting this value in (7), and integrating by parts, one

portion with respect to x, and the other with respect to j/, ob-

servins: that / or— must vanish at the limits, we shall obtain
u

*

^
J.CX'S^^^'"+^^i'*''''+ Vmt:\^'dydx. (ii)
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431. Now it will first of all be necessary to the existence

of a maximum or a minimum that the coefficient of u^ shall be
of invariable sign throughout the field of the double integral.

t'

Putting T for -, this coefficient may be written
^/

vJ.r^2Y-pT^'^'i\T:. (12)

But to secure that the middle factor of (12) shall be incapable
of changing its sign or vanishing for any real value of T posi-
tive or negative, the equation

must be incapable of being satisfied by any but two imaginary
values of T; so that we must have

( ^pp) ^pp

Therefore it is necessary to the existence of a maximum or

a minimum that Vpp shall be of invariable sign throughout the

portion of the double integral which we are considering, and
also that Vpp Vqq

—
( Vpgf shall be always positive, although it

may vanish at some point. By reference to works on the dif-

ferential calculus it will appear that these conditions are anal-

ogous to those which must hold when we seek by the ordinary
method to maximize or minimize a function of two variables

which are independent.

432, But it is evident that before we can assert in any
particular case that we have a maximum or a minimum, we
must, after finding the two above conditions to be satisfdctory,
be able to show that u ox ku is not an admissible value of Sz

throughout any finite portion of the integral, and also that no
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element of <^^will become infinite. To ascertain these points
we must be able to determine the quantity u

;
and here the

theory practically fails, although in theory u may be deter-

mined in the following manner :

Suppose the equation M = o were completely integrable,
the integrals being of such a form that we could obtain z as

a function of x and y, and probably two arbitrary functions of

X and y, and then that by means of the conditions furnished

by the fixed contour z could be found as a known function of

x^y and two constants, say z=f{x,y, c^, c^ =/. If now we

vary c^ and c^, the corresponding values of Sz, dp and Sq,

although not necessarily zero, will be such that z-\- 6z, p-{-dp
and q -\- dg will still satisfy the equation M = o\ that is, SM
will be zero. Therefore, because (5) is true, it will appear, by
precisely the same reasoning as in Art 132, that

The preceding discussion is all that we have space to pre-

sent, nor would a more extended treatment prove profitable.

But the reader who may wish to pursue this subject further

is referred to an article by A. Clebsch on the reduction of the

second variation of a multiple integral, contained in the fifty-

sixth volume of Crelle's MathematicalJournal iox 1859.
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Section V.

MAXIMA AND MINIMA OF TRIPLE INTEGRALS.

Problem LXVI.

433. Let u be the density at any point of a body whose form,

position and mass are known. Then, denoting by p, q and r the

partial differentials —•,
—- and -—

,
it is required to determine

•^ dx dy dz

the law of this density, so as to minimize the expression

z*^! f*y\ n^x ,XXX ^f^^f+ 't^-r'd.dydx. (I)

Since the mass of the body is to remain constant, we must

have

rx^ pvi nzxIII udzdydx . (2)
Oxq vfyo t/Zo

-^ ^ J

always constant.

Now extending the method of double integrals, we always

suppose that when u is known as a function of x, y and z, (i)

and (2) are first integrated with reference to z only, x and y
being regarded as constants

;
and for this purpose we must first

substitute in (2) the value of ?^ as a function of x, y and z, and

in (i) the values of/, q and r derived from this function. In

other words, the body is supposed to be divided, by planes

parallel to the co-ordinate planes, into prisms whose edges
are dz, dy and dx

;
and we first sum up these prisms along any

ordinate z, or we, at any rate, obtain the portion of the integral

comprised within this column.

Thus, considering (2), for example, we would have

dy dx j \idz ^=^ /f{x,y,z)dydx, (3)
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which will give us the solidity of any right parallelepipedon
whose edges are z^

—
z^^ dy and dx.

Before we can proceed further with the integration, z^ and

z^ must be determined as functions of x and y ;
that is, the

body must be limited in the direction of the ^'s by surfaces

whose equations are z = z^ and z = z^, z^ and z^ being known
functions of x and y. After this substitution, (3) may be

written

dydx I ^udz = f'{x^ y) dy dx, (4)

We next integrate with reference to y only ;
that is, we sum

up all the parallelepipedons corresponding to any particular
value of x^ and thus obtain

which will give us the solidity of a section of the thickness

dx, and cut from the body by two planes at right angles to x.

Now the values y^ and y^ corresponding to any particular

value of X, are the limits of this section in the direction of the

ys,. But instead of supposing any section to terminate in a

point, we shall suppose it to be terminated by a right Hue per-

pendicular to the plane of xy, because this supposition is more

general, the former being at once deducible from it by merely

reducing these terminal lines to points.

Hence, under the most general supposition, the body is sup-

posed to be limited in the direction of the j/'s by certain cylin-

drical walls whose equations are y — y^ and j = y^ ;
and there-

fore before integrating again we must determine y^ and y^ as

functions of x, and substitute this value in (5). Then (5) may
be written

dx j j \ dz dy = F\x) dx, (6)
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We now integrate with respect to x
;
that is, sum up the sec-

tions just mentioned. This will give

r^ r" r\ dz dy dx =^ r^F'dx = r'F"{x\ (7)

Now the most general supposition is that the body is ter-

minated in the direction of the ^s by two planes perpendicu-
lar to X, whose equations are x ^^^ x^ and x ^=^ x^. For other-

wise it can only terminate in an edge perpendicular to x, or

in a point, both of which cases are at once deducible from the

first supposition.

4-34. Thus as a geometrical conception we may consider

any definite triple integral as extending throughout the entire

space comprised within six faces
;
the first two, z =^ z^ and

z = z^, which we shall denote by Q and C^, being of any char-

acter whatever, either face being, if necessary, made up of sur-

faces satisfying different equations ;
the second two being the

cylindrical walls y = ^o ^^d y = j^, which we shall denote by
B^ and B^, either face being at liberty to become merely a con-

tinuous or discontinuous edge, or to be composed of different

cylindrical faces whose generatrices are parallel to the axis

of z; the third two, which we shall denote by A^ and A^, be-

ing merely the planes x = x^ and x — x^, where either plane

may reduce to a point or to any right line perpendicular to x.

435. Now suppose that throughout the solid given by (2)

we make, according to some law, an infinitesimal change in

the density u. Then we shall obtain a new solid which, while

not differing from the first in form, will differ in its molecular

condition, and may be called the derived solid. Moreover,
to obtain the difference in the masses of these solids, we have

merely to sum up the changes which take place in each ele-

ment udz dy dx.

But in varying any element, it is most natural to consider
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the parallelepipedon as undergoing no change whatever in

position or form, but in density only. That is, we may regard
X, y and z, and consequently dx, dy and dz, the edges of the

parallelepipedon, as incapable of variation. Hence, the mass

being ^n^ we would have

6m = III ^^u'dzdydx,
t/arc t/t/o e/zo

Now, to generalize, let

f*^i PVi f*ZxU= / / Vdzdydx,
tl^O t/i/o *^Zo

-^

where V is any function of x,y, z, u,J), q and r. Then it will

appear, by the same reasoning as before, that when we vary
u, p, q and r, the limiting values of x, y and z—that is,' the

limiting faces—being fixed, the corresponding change in U
will be

^U=S.l'Sy!S.y^-^^+ V^^P^V-i^1^Vr6r\ dzdydx. (8)

Moreover, it is evident that if V contain differential coefficients

to any order, the same method must be pursued in obtaining
6U.

436. Now let us first assume u to undergo no variation at

the limits
;
that is, along the six faces. Or, to fix our ideas, sup-

pose that in equation (i) or (2) the density were required to

remain fixed throughout all the limiting faces, or the surface

of the body, it being assigned by us arbitrarily for each limit-

ing surface at the outset. Then 6u will vanish at the limits,

and it is evident that by integrating by parts we can obtain,

from (8),

^u=rrr k- -^ -^ -^ i ^^^^^^y^^-
t/o-o t/yo dz^ { dx dy dz )

r^\ nvx pzi
/ / / MSu dzdydx.dXa v'Va fJZn "^

S:
(9)
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In like manner we may treat the case in which V contains

differential coefficients of u to any order.

4-37, Returning- to (8), let us now consider how to trans-

form the variation of U when u is unrestricted at the limits.

By equation (7), Art. 382, we have, putting

dt

dx
du = t, dp = -J-, Vp = u.

nx\ pvi PZi

X X X V^Spdzdydx =

Jxq tlyo tJzo dx '^0 ^^2/0 t/2;o
^

-rr rvZ-f^-dzdx-rrr'v/-^ sudydx. (lo
t/a^o /2/0 t/^^o

^ dx *^^o *^^o '^0 dx

Again, writing F^ =z u, Sq = — ,
we have, by (8), Art. 383,

rr rv,sqdzdydx=-rrr'^-^sudzdydx

-^ r /"' pV,6udzdx-rr rv/Uudydx.{.i)^ uxo ivq Jzo 3 Jxo *Jyo Iz^
^
dy

Lastly, by equation (9), Art. 384, or by integrating directly

by parts, we have

'

/ / Vrdrdzdydx =
Xq t/T/o *^Z0

- r r n^j^sudzdydx+rr r^sudydx. (12)
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SuDStituting these values in (8), and arranging, we have

+rrr{^'-f-f-^^i-^.*- (.3.

In this form of c^^^we observe that there are four terms, the

first relating to the faces C^ and C^ only ;
the second to the

cylinders B^ and B^ only; the third to the planes A^ and A^

only ;
while the fourth extends throughout the entire inte-

gral U.

438. Now when U is to be a maximum or a minimum,
SUto the first order must vanish

;
and it is evident that whether

the terms at the limits exist or not, we shall obtain the equa-
tion

an equation which holds throughout the integral. The inte-

gral of this equation will involve certain arbitrary functions
;

but if // be invariable at the limits, the calculus of variations

affords us no further equations of condition, and these func-

tions must be determined by the values which we require 11

to maintain upon the various faces which limit the integral.
But when u is unrestricted at the limits, we must also have

L — o, L denoting the terms at the limits
;
and since 6u (for

example, the variation of the density, if, as in (i) and (2), u be

the density) is entirely in our power for each point of the
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various faces, these faces themselves undergoing no change in

form, it is easy enough to see that we must have the equations

^-^^^-^'1-°'
dy
dxV,- F^^ = o, Fp

(15)

the first equation holding for the faces Q and C^, the differen-

djs dz
tials -r- and -- being relative to these faces only; the second

dx dy
dv

holding for the walls B^ and B^, the differential
-j- being rela-
dX

tives to these walls only ;
and the third holding only through-

out the planes A^ and A^,

439, We will now show that, as in the case of double in-

tegrals, these conditions are in reality identical.

Let a^ b and c denote the angles made with the co-ordinate

axes by any normal to C^ or C^. Then the first of equations

(15) will give the conditions

, Vp cos a-\- Vq cos b-\- Vr cos c = 0. (16)

Now for the cylindrical faces B, and B, we have cos c = o,

and the second of equations (15) would therefore give the

condition

Vp cos a-\- Vq cos b = 0, (17)

which would follow at once from (16) when cos
<:, vanishes.

Lastly, for the planes A^ and A^, we have cos r = o, cos b — o

and cos a — i-, so that equation (16) would give at once

Vp = Q, the equation required. It appears, therefore, that the

first of equations (15), or rather that equation (16), holds for

all the faces.
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440. Now it is clear that the problem" proposed at the

beginning of this section is one of relative "minima, since the

variations of u, -p, q and r are to be so restricted as to permit
a certain mass to remain constant. But it will readily appear
that by selecting portions of the solid, just as we did of the

curve for single integrals and of the surface for double in-

tegrals, we can extend the method of Euler, by the reasoning
of Bertrand, to triple integrals also

;
and we shall therefore

assume this fact without further discussion.

Now assuming, for convenience, as the constant multi-

plier, we must, as we see from (i) and (2), minimize the ex-

pression

P^i /*2/i /*2i= Vdzdydx. (i8)

Here
I

v^ =

so that the equation M—o gives

I

I

^ P

g dx Vi-^-p'+q'-^r'
'

dy Vi -\- p"+ q'+ r"

^ ^ =0. (20)

y,:
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This is an equation which is analogous to that of the circle

and sphere. If we suppose u fixed at the limits, we must as-

sign it so as not to conflict with this equation. These condi-

tions could evidently all be fulfilled if the body were a sphere
the density of whose surface were to remain uniform through-
out.

When ti is not restricted at the surface of the body, equa-
tion (i6) will give at once the condition

/ cos a-\- q cos b-{-r cos c-=o, (22)

which, as we have seen, must hold for all the limiting faces.

441. Let us now suppose that while the mass of the body"
is to remain constant, its form is not fixed, its density at

the surface, however, being required always to satisfy the

equation

f{x,y,z,u)=f-=o, (23)

/ being any function whatever.

This case corresponds, for the triple integral, to that of a

double mtegral in which the required surface is to have its

contour always upon one or more given surfaces. For here

the faces C^, etc., take the place of the contour, u is the de-

pendent variable instead of z, and the hmiting function or

functions /= o which 71 is to satisfy upon the faces, take the

place of the equation or equations of the surface or surfaces

upon which the contour must rest.

But to enable us to discuss this case, we must first con-

sider how to find the variation of U when the limiting values

of X, y and z, as well as those of u, are variable, where

UXq t/Va tJZn

V being any function of x, y, z, u, p, q and r. We can evi-

dently pass from the primitive to any derived solid by first
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varying the limiting faces, supposing u to remain unvaried,
and then varying u throughout the new sohd. In var3dng
the faces, suppose first that x and y remain constant, and that

we change any two ordinates z^ and z^ of the faces C^ and C^

into ^0+ ^-^0 ^nd z^ -\- Dz^. Then, by precisely the same rea-

soning as if z were the only independent variable, as indeed it

is so long as we are passing from z^ to z^ only, we shall have,

to the first order, as the change in /
'

Vdz, Vfiz^ — V^Dz^ ;

and extending this method to every value z^ and z^, we shall

have, as the part of ^^ resulting from the variation of the

faces C^ and C^,

We may next vary the walls B^ and B^, supposing x, z

and u to remain unvaried. But in varying these faces we
must remember that they are always to remain cyhndrical,

every generatrix being parallel to the axis of z. Now, as

before, when we change y^ into y^ + Dy^, and y^ into y^ -[- Dy^,
X and z remaining unvaried, y is the only independent vari-

able, and the corresponding change in / Vdy will, to the first

order, be V^Dy^
—

V^Dy^ ;
and this, being taken throughout any

/ VDydz, where Dy is a constant

throughout the generatrix in question, but independent for

each. Now since we can only vary B^ and B^ by varymg each

generatrix m the manner described, we must take the sum of

these variations, the integration being with respect to x\ and

therefore the change resulting to U from varying B^ and B^
will be

f*^i ivi r^\

X /. X VDydzdx. (25)

We next vary the planes A^ and A^, supposing j/, z and ti to

remain unvaried, and keepmg A^ and A^ always planes, per-
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pendicular to the axis of x. Then the change of .r„ and x^

into x^ + Dx^ and x^-\-Dx^ will give V^Dx^ — V^Dx^. Hence,

extending this method to every point of the planes A^ and^„
we shall obtain

^'VDxdzdy, (26)

where Dx^ and Dx^ are constants, but independent.
Besides those which we have evidently omitted, various

other terms of the second and higher orders would arise at

the intersection of the faces, which we do not propose to con-

sider.

44-2. If now, in the second place, having varied the faces,

we vary u throughout the new limits, these limiting faces

themselves remaining fixed, it is evident that the result can-

not differ by any term of the first order from the value oi SU
before the limits were varied, the difference consisting only
of the variations of (24), (25) and (26), themselves quantities of

the first order only. Hence this part of SU is to be found

and transformed as already explained. Therefore, finally, add-

ing (13), (24), (25) and (26), we shall have

Jx^ Jyo Iz^
\

"^

P^^ ^
dy S

"^

+ / / / VDydzdx-\- / / VDxdzdy

+/VT" I
^»-^-^-^ I ^ud.dyd.

= 0. (27)
Jx, Jy, ^zo i

""

^j^ dy dz S

-^
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Moreover, it is evident that if V contain differential coeffi-

cients of u to any order, we shall still obtain the most general
value of dUhy merely adding (24), (25) and (26) to the result

obtained by varying U^ supposing the limiting values of x^ y
and z to be fixed.

44-3. Now if U is to become a maximum or a minimum,
we must, denoting the terms at the limits by Z, equate L and
M severally to zero, where M is the same as before, but L is

not. Then, if we could suppose the quantities Dz, Dy and Dx
to be entirely independent of Su^ w^e shall first of all obtain

from L — Q equations (15), besides which, if Dz, Dy and Dx
be independent, we must equate severally to zero (24), (25)

and (26). But since Dz^ and Dz^ have all the independence of

variations, (24) will give F= o, which, together with the first

of equations (15), must hold throughout the curved surfaces

C^ and C^.

Now in (25) Dy is an independent constant along each sev-

eral generatrix, so that each element of the integral must van-

ish, and we must have / VDydz = o, which holds along any

single generatrix only ;
and Dy being constant along this

generatrix, we have / Vdz = o, which is all the reduction

we can effect, and must hold along each generatrix of the

faces B, and B,y while the second of equations (15) holds for

each point of these faces.

Lastly, in (26) Dx^ and Dx^ are two independent constants,

and we have, therefore, / / Vdzdy = o, which is the final

equation, and holds throughout the entire planes A^ and A,

only, while the third of equations (15) must hold for each sep-

arate point of these faces.

444. Now although we do not know, a priori, just how

many conditions at the limits the solution of the equation
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M= o can be made to satisfy, the number will probably not

exceed two, so that it is evident that the quantities du, D2, Dy
and Dx cannot be regarded as entirely independent, since this

supposition would, as we have seen, give us twelve equations
at the limits, two relative to each of the six faces. Hence
we must impose some restriction at the limits of the kind men-

tioned in the beginning of Art. 441, which we now proceed to

consider, but at first in a general manner, and not relative to

any particular problem.

445. Suppose, first, that upon the face C^, u is required to

equal some functionf oi x, y and z, this face itself being sub-

ject to variation of form
;
and let P, Q and R be the partial

differential coefficients of / with respect to x, y and z. Then,

because, when we pass along any ordinate z, x and y remain

constant, / becomes in reality a function of z and constants

only, and might, therefore, be made the ordinate of a plane

curve, z being the abscissa. Hence, by the same reasoning
as hitherto, we must have

l'"du=j'\R-r)Dz, (28)

and a similar equation for the lower limit of z. In like man-

ner., if we suppose that u must equal /upon each of the other

faces, it being immaterial whether or not / be the same func-

tion for all the faces, or even throughout the same face, we

shall, by extending to*;ir and y the reasoning just employed for

z^ obtain for B^ and A^ respectively,

5u=l {Q-q)Dy, / 6u=/ {P^p)Dx, (29)

with similar equations for the lower limits.

Now taking the value of L from {2^), putting together the

terms affected by hke signs of substitution, and then elimi-

nating du from each by equations (28) and (29), we shall have
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+/rxxs ^+ ^.(^-/)s^--'-'^/ = o. (30)

446. Now, because the quantities Dz^, Dz^, Dy^, Dy^, Dx^
and Dx^ are all independent, we must, in the first place, equate

severally to zero each of the three, or rather six terms in L.

Hence, as before, the first will evidently give

V^[Vr-v/^^-v/^(^R-r)^o, (31)

an equation which relates to either of the faces C^ or C^ only.

Next, by the same reasoning as before, the second term

can only be made to give

X" \V\[V,-V, g)(G -q)\dz^O, (32)

an equation which holds for any one generatrix only of the

faces B^ or B^, the integral being required to be taken through-
out that entire generatrix.

Lastly, the third term will give

£lyV^V,(P-p)\dzdy = o, (33)

an equation which holds for the planes A, or A, only, the in-

tegration being required to extend throughout the entire sur-

face of either plane.
But since u must always equal / upon the face C^ or C^, if
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we pass from one point to another upon either of these faces,

the change which u^ the density, for example, will undergo,
will equal the corresponding change in /, however these

points may be situated. Let us, then, assume these points to

be indefinitely near each other, and both to be first in a sec-

tion cut by a plane parallel to that of xz, and then in one cut

by a plane parallel to that oi yz. These suppositions will give

respectively

pdx -\-rdz =: Pdx -\- Rdz, qdy -\- rdz = Qdy -\- Rdz,

Whence

^ - _ ^-^ d^^_ Q-q
dx~ R-r dy R-r ^^"^^

By similar reasoning, since u always equals / upon either

cylindrical wall B^ or B^, if we pass from one of two consecu-

tive points to the other along the intersection of this wall

with the plane of xy, we must have

pdx + qdy = Pdx+Qdy, g=-g^; (35)

which, being true along the plane of xy, is of course true for

the entire face B^ or B^.

Now substituting these values in (31) and (32), and repro-

ducing (33), we have

F+ Fp(P - /) + V,{Q -g)^Vr{R-r) = o,

X''\V^V^{P-p)-^V^{Q-g)\d, = o,
y (3g)

4-4-7. Such, then, are the equations which must hold for

the various limiting faces
;
and the reader can easily apply
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them to the particular problem with which we started,

although no results of importance present themselves. In-

deed, we assumed this problem merely because it better fixes

our ideas to think at first of u, the dependent variable, as some-

thing physical or geometrical, like density, than as some func-

tion merely of x, y and z^ although the latter view will, in

general, be necessary.
It would appear that, without reducing the number of the

limiting faces, we shall still have in general too many equa-
tions at the limits, although our imperfect knowledge as to

what should be the form of the most general possible solution

of the equation M=o will prevent us from determining how
far these conditions might be fulfilled.

Although the converse need not be true, the second and
third of equations (36) would be satisfied should the first hold

throughout all the limiting faces. For since ?/=y along any

particular generatrix of the ^'s, R and r must be always equal

along that generatrix ;
which would satisfy the second equa-

tion by giving

V+V^{P-p)+ V,{Q-q) = o.

In like manner, because u—f throughout the planes A^ and

A^, we see, by first passing along any line perpendicular to

the plane of xy, and then along any line perpendicular to

that of xz, that throughout the A'%, R — r, Q = q, and the

first equation satisfies the third by giving

V+V^{P-p) = o,

448. When the limiting values of x, y, z and u are all

fixed, the terms of the second order can be sometimes ex-

amined. Thus in the particular problem with which we

opened this section, Vuu, Vup, Vuq and Vur all reduce to zero,
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the ten terms of the second order will reduce to six, and we
shall easily find that (J^may be exhibited thus:

+ {q^p-p^qf + {rdp -pdrf + {rdq
-

qSrY]dzdydx,

which is evidently positive, thus giving us a minimum.
The foregoing discussion will render the reader sufficiently

familiar with the treatment of triple integrals, while a discus-

sion of those of a higher order would be of no use, except as

a matter of curiosity, and would be beyond the design and

scope of this work.

Section VI.

ANOTHER VIEW OF VARIATIONS.

449. If, in the preceding discussion, we had for double

integrals ascribed variations to x and y, and for triple to x, y
and ^, we could, as in the case for single integrals, have

obtained the same formulae as by the method which we have

adopted. Or we might even, as Prof. Jellett does, in the case

of double integrals, assume the required surface as the inde-

pendent variable, considering x, y and z as functions of the

surface.

But there is besides these another more analytical view of

variations, applicable to integrals of any order, which pre-
sented itself to Euler and Lagrange, has been followed essen-

tially not only by Strauch, but by Sarrus, and subsequently

by Moigno and Lindelof, as will appear from their Calcul des

Variations^ Legon III.

450. To begin, then, with the simplest case, suppose a

plane curve whose equation is r = f(x) =:/, and change^ into
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y -\- Sy or Y,x remaining unvaried. Then we may regard Y
as a function F oi x and /, where / is a new quantity entirely

independent of x, and constant, and may enter F in any man-
ner we please, provided only that the form of F shall be such

as to cause it to reduce to /when t is made zero. Then it is

evident that if we regard f as containing t, we must regard
it as a function of x and o. Then, since x does not vary for

any change in /, we may, by Maclaurin's theorem, develop Y
in ascending powers of t, obtaining

''=/+'[f]+i[?]^-. <)

where brackets denote that t is made zero after the differen-

tial coefficients of F with respect to t have been found. If

we suppose t to be made infinitesimal, we may neglect powers
of / of an order higher than the first, and write

^-'""-\S. t, (2)

in which, because / may enter F in any manner we please

which will cause F to reduce to / when / is zero, — is

entirely in our power, and may be made to become any func-

tion we please. Therefore, replacing F by y, we have

where dy is as unrestricted as formerly.

In like manner, since, when jj/
= /, y or -^ z=f\x) =/', and

when y is supposed to be F{x, /), y' becomes F\x, t), we shall

find

V=[f]<. (4)
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But t being independent of x, if we differentiate (3) with re-

spect to X, we have

dx dxLdtJ Ldx dt J LdtJ

Hence, as before,

'^=?' <«

and similarly we find 6/', Sy'", etc., to be as usual.

451. Next let Fbe any function of x,y,y\y\ etc. Then

when J/, y , y\ etc., which are all functions of x, are supposed
to become such arbitrary functions of x and / as will reduce

them to their original values when t is made zero, V must

also become some function of x and /, and we have at once,

as in the case of y andy ,

-=K-]'=lf[|]+fB']+-.l'

which, to the first order, is the usual form.

Now let V besides y contain another dependent variable z

with its differential coefficients 2', z'\ etc., with respect to x.

Then if y and z are independent, t may enter either in any

arbitrary manner which will permit it, and also its differential

coefficients, to remain unchanged when t is zero. But if y and

z are always to be connected by an equation, differential or

other—that is, if Sy and dz are to be related—t may enter one

of these quantities in any arbitrary manner, but must enter

the other in such a way as to cause y and z to be related in

the required manner. In either case, since y and z are func-

/
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tions of X, when they become functions of x and /, F becomes

also a function of x and /
;
and proceeding as before, we have

-=[f]-f[i]'+i;[f]'+-

dV r.
,

dV o. , ,

.

,

dV ^ . dV j. .
, ^ , .

=w^^+w ^^ ^^ '^^ '^+^'^-' ^^^

which is the same form as before, and in it, as we have

already seen, the variations may be independent or may be

made to fulfil any conditions which we may impose.
In like manner, if Fbe a function of any number of inde-

pendent variables x, y, z, etc., and a dependent variable u to-

gether with its differential coefficients with respect to x, y, z,

etc., we shall, by supposing u to become a -function of x, y, z,

etc., and /, instead of x, y, Zy etc., only,
—t being entirely inde-

pendent of these variables,—render Fa function of x,y,z, etc.,

and /, and obtain

where the second member will always be the same as we would,

by the ordinary method, obtain as the variation of Fwhen x,

y and z do not vary.

4-52. Now suppose we have the equation U =J^ Vdx, V

being any function of x, y, y' , y", etc. Then U will be some

function of x^ and x^ ;
and when y becomes such a function of

X and / as will reduce Y to y when t is zero, U will also be-

come such a function of x^, x^ and t as will reduce U-\- SU to
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U by making t zero. Therefore, proceeding as formerly, we
must, to the first order, have

where —— denotes the differentiation of U with respect to /,

and to everything which in any way depends upon /, and

nothing more.

Now, in the most general case, we cannot regard the limit-

ing values of x as fixed, but we may suppose these also to

become functions of t, together with some constants indepen-
dent of /, and this supposition will give us all needed general-

ity. In (9) the increments ^x^ and Sx^ or Dx^ and Dx^ become

/'[§]' --m]'-
Now by equation (i), Art. 375, (9) gives

=^ r'svdx-^r^vDx,

where c^Fhas the form given in (6), and S/^ dy\ etc., are, as

appears from (5), capable of the same transformation by inte-

gration as usual.

Moreover, if V contain the dependent variable 2 also, and
its differential coefficients, the last equation will still hold,

only SVwiW take the form given in (7), and may be trans-

formed as in the ordinary case of two dependent variables ;

so that for single integrals we always obtain at once the same
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fundamental and the same limiting equations as by the ordi-

nary method.

453. The reader will probably now be ready to admit
that equation (9) must hold also for any definite multiple

integral whose limits are fixed or variable.

Now in equation (i), Art. 375, change u into / \dy. Then

we have, by the aid of the same equation,

— / / udydx=.

«/a:o «/?/o dt ^^0 ho dt '^0 e/t/o dt

and here changing u into / u dz, we obtain

--/ / / udzdydx=.

I / / -— dz dy dx-\- / / u-—dy dx

^ Jxo lyo tJzo df
'

Aco t/2/0 «/2o dt

Hence it is easy to see that we would have respectively for

u— I I

'

Vdy dx and u= / /

'

Vdz dy dx
OXq t/2/0 0x0 tJyo t/2o

the two equations
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6U= r^ r^ r^dVdz dy dx -\- r^ r^ T'VDzdydx

which are the forms previously obtained for variable limits,

and — /ordFis just what it would be by the ordinar}^ meth-

od, and is transformable in the same manner
;
so that here also

we shall obtain at once the same general and the same limit-

ing equations by either method.

4-54. Before proceeding we shall require some additional

formulae in the calculus of substitution.

In (lo) change u into / V. Then by equation (2), Art. 376,

we obtain

dt t/^o Jy<^ ho -" t/xo Jyo Izo { dt dz dt \

^rrr-% ^^+rrr-~ dy. ca)'

t/xo /z/0 Izo dt '^0 ^V^ ha dt ^

pyi PZi
In equation (2), Art. 376, change u into / / udzdy.

Then finding the values of

/ / udz dy and -— / / u dz dy.
d
~dtdyo f^zo 'Y dx

which may be done from (10) by changing x to y and y to z,

we have
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It Ixq dy^ Jzo -^
/xo Uyo fJzo

\
dt dx dt

\

/^i rvi
/^i \dz . dz dx ^ J

' ho /vo Jzo \dt^ dx dt S ^.

u, and

employ equation (2), Art. 376, with y put for x. Then in the

resulting equation change u into / u dz, and reduce by equa-

tion (i), Art. 375, with z put for x. Then we obtain

dt^^^ ho t/zo Uxo Ivo dzo
y
dt dy dt \

'

vfxo /yo ho \dt dydt ) '^0 'Vo e/^0 dt ^ ^

Tn equation (A), Art. 377, first change u mtoj tidy, and

reduce the first member by equation (i), Art. 375, with x put

Zzi tc, reducing the first

member by equation (2), Art. 376, with x put for /, and z for

X
;
and lastly, change u into ut, performing the differentiation

in the first member. Then transposing, we have

£^r/\^ayd.=rr'/\tdy-r'rrutfd.t/Xo t/yo izo dx '^0 *^^o '^0
"^ dxo lyo ho dx

Jxo Jyo ho
\ \dx

^
dz dxi

^ dzdx )
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Next, in equation (A), Art. 377, put 7 for x^ thus:

/
-— dy = / u.

In this equation first change u into / u, reducing the first

member by equation (2), Art. 376, with y put for t, and z for x]

then change it into Mt, perform the indicated differentiations

in the first member, and finally prefix an integral sign fol-

lowed by dx to both members, as we evidently have a right
to do. Then transposing, we have

/ / / u -— dy dx ^= I I iitdx

In equation (A), Art. 377, change u
into^ u, and reduce the

first member by equation (2), Art, 376, with x put for /, and

y for X. Then change u into / u dz, and reduce the first
1/ Zq

member by equation (i). Art. 375. Lastly, changing u into

uty and transposing, we obtain

/ / / u---dzdx-=.

ixo lyo tJzQ t/xQ lyo izq
[ dx dy dx )

fJxo hjo fJzo
{ \dx

'

dy dx)
^

dy dx )

^ ^
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465. Suppose now that we had, as we shall presently have,
occasion to consider such expressions as

u= r^ r^ r^ vdydx, u= n r^^ r^ vdz dx,

which we may call mixed expressions, V denoting any func-

tion of the independent variables x, y and z, and of any quan-
tities dependent upon them. Then it is evident that equation

(9) must still hold for SU\ and therefore, by putting V for u

in formulae (A), (B) and (C), we obtain at once the equations

OXq lyo tJzQ
[ dy )
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^CCi: I
"" + "I «^

t

-+/.7.T "'^- ()

where ^x, dy and ^z are synonymous with Dx^ Dy and i7^,

and (JF is obtained upon the supposition that ;ir, jj/
and 5" do

not vary, while -7—, —r- and -—- are the partial differential co-
-^ ax dy dz

efficients of V taken only under the supposition that x, y and

z enter V explicitly.

Moreover, if in any of the formulae {A), {B), (Q, {D), etc.,

we wish to substitute in the first member but one limit of the

variable, we need merely substitute in the second member the

same single for the double limits of that particular variable,

none of the other substitutions being in any way affected.

Problem LXVII.

456, // is required to determine the form which must be

assumed by a surface of given area in order that it may enclose a

m,aximum- volurne.

This is only the most general statement of the problem,

particular cases of which were discussed in Prob. LXIV. and
also in Prob. XVI. Denote the volume by v. Then, although
we might express vhy a. double integral, we shall, for greater

generality, write

v= I I fdzdydx. (i)
t/ao *^yo t/«o

Now the surface 6" which bounds this volume, and which
is to retain an invariable area, must be supposed, as usual in

triple integrals, to consist of the six hmiting faces C^, C^, B^, B^,

A^ and A^, S being their sum. Moreover, these several faces

are expressed by the equations
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/^o /'yi /»^1

1^1 rvi nzi

^.=/ JyJ.,d^dy'

where / — ~, / = —1 and q = —-. But assuming- — ^ as the
ax dx dy

^

constant multiplier, we are, by the method of Euler, to maxi-

mize absolutely the expression

U=v-a{A,-\-A^-\-B,-\-B,^C,-\-C:)=v-aS. (3)

Here the limits of the integrals are subject to no explicit

restrictions, and it might therefore appear as though no maxi-

mum could be possible ;
but problems of relative maxima and

minima do not always require any additional explicit restric-

tions upon the limits, the implicit restriction that the variations

should be so taken as to render one or more of the integrals
constant being sufficient for a definite solution. In the pres-

ent case it will be found that the fact that 5 is to maintain

always the same value constitutes an implicit restriction,

which is sufficient.

457. From formulae (H), (I) and (G), by putting for V
I in the first, \^\ -\- y"" in the second, and '/i+/''-j-^' in the

third, and substituting but one limit, say the inferior, in the

first member, we obtain
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f*Xy lyo PZ^ y'

dB,= / / ^

^
^ dy'dzdx

+£y^C\ VT^^^6,+ VT^{^^qdy^dx

l^i IVo Pz-i
^

_ ^

A Sq\.dy dx

/x\ f*yi izq ,

(4)

and similar equations with the single suffixes changed from
o to I will evidently hold for SA^, dB^ and SC^.

We now transform by equations (D), (E) and (F) the terms

containing dp,.dq and dy\ which may be done by substituting
in these equations, respectively,

_ P dt _ dSz _ r.

^ ~~

vTIfT^^-p^^'
'dx~ dx

~ ^'

a dt dSz ^

II =
|/i 4-y^' dx dx

observing that

dt dSz J dt dSy~ =zo and -- = -f- = o,
dz dz dy dy
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aud also that

du _,du _ du du _.du _ du

dx dz dx' dy ds dy^
and

du j^du , _du
dx dy dx^

where the differentials in the second members are merely
total. Having effected these transformations, and taken also

the variations oi vm (i), we shall have

6v = / / 6zdydx-\- I / / dy dz dx

l^x f*y^ r^x
+ / / / dxdzdy,

/xo
j'*yi /zi /xo /yi pzi

6B^^-rrr±-j=-6yd.d.Jxo I e/zo dx 4/1 -\-y
^

+ - \Szdydx^
dy y'i_|_/+^«^

/>.. /../.of q-py' ^^ Vi^f^q'Sy I dx

/^i f*y\ 1^0 c 4) , )

+ / / / ) —- ^
6z+Vi+p''+q''dx[dy,

(5)
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and it is evident that SA^, SB^ and SC^ will be expressed

by precisely the same equations with every single suffix o

changed to i.

458. But, as appears from (3), we must, to obtain dU,

multiply the last three, or rather the last six, of equations (5)

by — a, and add the result to Sv. If, then, in this equation we
resolve all the signs of substitution, and then bring together
the terms which contain like variations, and are affected by
like substitutions (which M. Sarrus does), SU will consist of

thirty distinct terms, six holding throughout the six limiting

faces, and the remaining twenty-four referring to what might
be termed the twenty-four edges of these six faces, each actual

edge of the body being regarded as belonging to either of two
faces

;
and these thirty terms are independent.

But following the device of Moigno and Lindelof, we may
write SUin the following condensed manner:

t/o-o t/2/0 Izo
j

\dx |/i

ap

+/+/
d

dy ^-^j^p'^j^q)\

"'^
\\dsdydx

-^T' T' T'dxdzdy
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+(/± VT+ynSx id^:^0, (6)

where the signs of substitution denote throughout SW the

same series of operations as before
;
the sign ± in the first

three terms denoting that at the first substitution the upper,
and at the second the lower is to be taken

;
the same sign in

the last three terms signifying that the upper is to be taken

when the quantities substituted have the same suffix, and the

lower when they have not, while these results must still, as

the sign
— or + indicates, be multiplied by — i or + i> ac-

cording as the quantity above the left-hand sign of substitution

has the suffix i or o. But the reader who may prefer can

easily write out the thirty terms from (5), and verify directly

the last and the following assertions.

459. Now equating to zero the coefficient of d^ in the

first term of (6), we have

Or denoting by r and r' the principal radii of curvature, the

last equation is equivalent to

i+ l=i and ! + -,= --; (7)
r r a r r a
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the first holding throughout the face C^, and the second

throughout the face C^. Then the two equations (7) show
that C^ and C^ have their mean curvatures constant, but turn

their convexities in opposite directions.

Equating to zero the coefficients of dz in the fourth term,
we have

'-^'' =Ti, (8)ni+/+/)(i+/o

which involves the four equations relative to the intersection

of the (7's and ^'s, the negative sign holding for the edges

C^ B^ and C^ B^, and the positive sign for the edges C^ B^ and

C^B^, But the first member of (8) equals the cosine of the

angle made with each other by the two surfaces along their

common intersection ;
and since this cosine is unity, we infer

that the ^'s and Cs are always tangent or accord along their

common edges.
We observe, also, that equation (8) will Cause the coeffi-

cient of (^K in the same fourth term to vanish without giving

any additional equations. For since the ^'s and ^^'s are

tangent, / and q will have the same meaning in both along
their intersection : thus ten equations have been considered.

Equating to zero the coefficient of ^z in the fifth term of

(6), we have, for the intersections of the ^'s and (7's,

^ =Ti; (9)
4/1+/+^'

— I when the suffixes are alike, and + i when they are un-

like. Equation (9) denotes that the faces C^ and C^ must, along
their intersections with the planes A^ and A^^ be normal to the

axis of X
;
that is, they must be tangent to or accord with these

planes.

TJien we observe, as before, that (9) causes the coefficient

of Sx in this same fifth term to vanish without giving rise to



SOLID OF MAXIMUM VOLUME. 53 1

any additional equations. Thus, then, eight terms more have
been caused to disappear.

460. Now having equated to zero the second term in
(6),

which is relative to the cylinders B^ and B^, and remembering
that dy must remain constant along any particular generatrix,
but is independent for each, we shall obtain

i
^^1 V n ay ^ dz = o, (lojdx i/i-\-y

which, with the positive sign, holds for any generatrix of B^,

and with the negative sign for the corresponding generatrix
of B^. But as the integration in (lo) is to be effected regard-

ing X, y and y' as constant, we have

^•^
-..-..) = 0. (II)dx |/i -|-y

Equating the first factor to zero, we would obtain a cylinder
of radius a, the limits of z being wholly undetermmed. But

neglecting for the present this supposition, we must have

z^ = Zj] that is, B^ and B^ vanish or reduce to mere edges.
The condition z„ = z^ will cause also the first member in

the last term of (6) to vanish without giving any new equa-
tions

;
so that thus six more terms in all disappear.

Equating to zero the third term in (6), and remembering
that Sx^ and dx^ are 'two independent constants, we have

r^ r'dzdy = o, (i2)

an equation which involves two, as it holds for either of the

faces A^ or A^, and shows at once that these two plane faces

must also disappear.
Then (12) will cause the last member in the last term of

(6), which is relative to the four intersections of them's and
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B'% to vanish without giving any new equations. Thus all

the terms in (6) have been caused to vanish severally.

461. If we admit into the solution the cylinder with ra-

dius a^ or for A^ and A^ any edge perpendicular to the axis of

X (which is probably admissible), we cannot say that all the

conditions of the question could be satisfied. But if we as-

sume B^ and B^ to become mere edges, and A^ and A^ to

become points only, the volume in question must be entirely
enclosed by the curved faces C^ and C^,

Moreover, from what has been shown it will appear that

these two faces must be respectively perpendicular to the plane
of xy along their common intersection, and they must there-

fore meet in such a manner as to coalesce and to form one and

the same surface, which will be given by the equation derived

from (7),

l-+a=y (3)

, Now the sphere of radius 2a will evidently satisfy all these

conditions. But in order to exclude all other hypotheses, it

would still be necessary to show that the sphere is the only
admissible solution obtainable by equating to zero the terms

of the first order in SU. But the proof of this fact has never

yet been obtained by analyses ;
and even if it could be, it would

still be necessary to show that the sphere would cause the

terms of the second order to become always positive, or else

those of some other even order to become so, the preceding

having reduced to zero
;
and this would present a new and

probably an insurmountable difficulty. Moreover, as we take

the entire sphere, we shall be obhged to deal with some quan-
tities which will become infinite

;
which fact might of itself

throw some doubt upon our investigations. But although
the complete discussion of this problem appears to be beyond
the power of the present methods of analysis, we are assured

from other considerations that the sphere is its true and only
solution.



CHAPTER IV.

APPLICATION OF THE CALCULUS OF VARIATIONS TO DETER-
MINING THE CONDITIONS WHICH WILL RENDER A
FUNCTION' INTEGRABLE ONE OR MORE TIMES.

Section I.

CASE IN WHICH THERE IS BUT ONE INDEPENDENT
VARIABLE.

Problem LXVIII. i

462. Suppose we seek by the calculus of variations to maxi-

mize or minimize the expression

Then returning to our former notation, we shall have

dx y / y

d'Q-n"- _^ ^y"
I

^^y\
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SO that the equation

M=N-P'-\-Q"z=:0

will reduce to o = o
;
that is, M will vanish of itself, or identi-

cally ;
so that we obtain no equation from which we can

derive a general solution, and have left merely the terms at

the limits, which may be written

4-63. Now in seeking to explain this anomaly, we observe

that Fmay be written

y{xy" -\ry')-xyy'

f
Whence we see that

fvd. = ^-l+c, and U= iy-l. (3)

Thus it appears that U can in this case be freed from the

sign of integration, and that the discussion of the conditions

which will render it a maximum or a minimum does not,

strictly speaking, belong to the calculus of variations ;
and we

can readily show that whenever U is integrable, M must

vanish identically. For assume the equation U—J^ Vdx,

where V is any function of x, y, y\ ^ -^ . . y^'^\ but is of such

a form that Vdx shall be immediately integrable ;
that is, in-

tegrable independently of any relations which may hold be-

tween X and y. Then we know that by definite integration

U may be written

^-l>_ x,y,y,.,..y(^-'^)), (4)
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which shows that U depends solely upon the limiting values

of X, y, y, etc., the relations between x and y being altogether
in our power. Now if in U^ before integration, we vary j^,j/',

etc., but suppose these quantities at the limits to remain fixed,

Z7will undergo no change; that is, SU will vanish; and be-

cause ^y, dy\ etc., are zero at the limits, ^^can, as usual, be

reduced to the form

SU=£-MSydx^o, (5)

to satisfy which, since Sy is in our power, M must vanish.

But unless M vanish identically, we shall, by equating it to

zero, have an equation which, if it be integrable, will deter-

mine J/ as a function of x, or, if not integrable, will establish

an implicit or differential relation between them, both of which

are contrary to the conditions of the question. If, therefore,

Vdx be integrable immediately
—that is, without assuming

any particular relation, either explicit or implicit, between x
andy—M must vanish identically.

464. Conversely, if, Z7and F having the same meaning as

before, we fin'd M to vanish identically, we may conclude that

Vdx is immediately integrable. For we see that SU will in

this case consist of the terms at the Hmits only, as in equation

(2), so that we infer that C/must depend solely upon the values

which X, y^ y' , etc., may have at the limits
;
and hence that U

must in reaUty be a function of these quantities only, which,

so long as y is wholly in our power, could not be true unless

Vdx were immediately integrable.
This mode of reasoning would seem to be sufficiently con-

clusive
; nevertheless it is not so regarded by Prof. Tod-

hunter, and the reader will find in his Integral Calculus, Art.

382, an attempt at a more rigorous demonstration.
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Problem LXIX.

465. V having the same form as before^ it is required to de-

termine the conditiofis which will render V immediately integrable

any num,ber of times, m.

First assume vt to be 2, and we have

f
I fvdx \ dx = xjvdx -Jx Vdx ; (i)

and hence, to insure that F shall be twice immediately inte-

grable, we must have both F'and Vx immediately integrable;

and conversely, if these quantities be immediately integrable

once, Fwill be immediately twice.

Now the first condition will give

N- P'-\- Q" - etc. = J/= o, (2)

which must be true identically ;
while putting v for Vx, the

second condition will give, in like manner,

Vy
—

Vy/-\- Vyn
"— CtC. == O,

^ (3)

which must also be true identically. But (3) may be replaced

by another equation, thus :

Vy—X Vy, VyI
= X Vyf , Vyt,

= X Vy>f , CtC,

Vy/= X Vy/+ Vyr, Vy.'
^ = X Vy.'

'+ 2 Vy.\

Vy./" = xVy,.'"+2>Vy./', etc.

Substituting these values in (3), and omitting those terms
which are known to be zero by (2), we shall obtain

P-2Q-\-zR"-Qic. = o, (4)

which must be true identically.
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Hence that Fmay be immediately integrable twice, equa-
tions (2) and (4) must be identically true.

Now, in the more general case in which fn is any number
less than n^ it is generally shown in works on the integral
calculus that, if we denote by U the result of the integration
oi Vm times, we may exhibit (7 thus :

U=—^—
\ ^"^-1 fvdx — (m— i)x-^-^ fxVdx
1

{in
—

i){m
—

2)

1-2 x^-^fx''Vdx-ttc.±fx^-^Vdx\. (5)

Whence it appears that to render F integrable //^ times it is

necessary and sufficient that the quantities V, Vx, Vx"", ....
y^m-i shall be severally integrable ;

and the equations arising
from these conditions can be determined precisely as before.

Thus if m be 3, we shall find, in addition to equations (2) and

(4), the identical equation

e-^i?'+ i^5''-etc. = a (6)1-2 1-2 ^ ^

Problem LXX.

466. // is required to determine the conditions which will

render Vdx immediately integrable, V being any function of x

and the dependent variables y and z, together with their differen-

tial coefficients with respect to x ; that is, y\ y" ,
z'

,
z"

,
etc.

Putting, as before, U for the integral, and transforming

SU, we shall obtain, as in Art. 303, a result which may be

written

SU^L,-L,^ r^M dydx+ r^YSz dx, (i)

where

M= Vy- Vy/+ Vy>/'- ctc, N= V,- F/+ F,//'- etc. (2)
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Now, as before, we may suppose the limiting values of j/, y,

z, z', etc., to be fixed, so that L^ and L^ will vanish.

Moreover, Sy and Sz are entirely independent, so that M
and TV must severally vanish if C/is to depend solely upon the

limiting values of x, y, y', z, z', etc. But either or both the

equations M —o and N— o, unless they be identically true,

would enable us to establish some explicit or implicit rela-

tion between x, y and z, whereas we require that Vdx shall

be integrable irrespectively of any such relation, other than

that
jj/

and z are to be regarded as functions oi y and x.

If V were integrable m times, it is easy to see that, as in

Prob. LXIX., we must have F, Vx, Vx\ etc., immediately

integrable, since equation (5) of that problem requires merely
that V shall be a function of x, and it might, therefore, con-

tain any number of dependent variables, y, z, ti, and their dif-

ferential coefficients with respect to x. Hence we should

evidently obtain with such equations as (2), (4) and (6) similar

equations in z.

Moreover, it will appear that for any other dependent
variable ti which V may contain, we shall require in addition

a similar set of equations in u.

Section II.

CASE IN WHICH THERE ARE TWO INDEPENDENT VARIABLES.

Problem LXXI.

467. It is required to determine the conditions ivJiich will

render I I Vdy dx reducible to a single integral, ivhere V is any

function of x, y, z, p and q, x and y being tzvo independent vari-

ables, and p and q partial differentials of z with respect to these

variables.

Denoting the definite integral by U, we know that after

transformation (JC/may be written
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dU=L +fJ'fJ'M Ss dydx, (i)

where Z, although consisting of simple integrals, involves only
terms which relate to the limits of the integration ; and by
supposing z to be unvaried along the lines x — x^ and x = x^,

we can make L consist only of quantities which are functions

of X, and the variations of such quantities.

Now we know that if we regard all the quantities at the

limits as fixed, L will vanish, so that if U can be reduced to a

single integral depending upon these quantities only, 31 must
vanish

;
and if this reduction is to be possible without deter-

mining z as some function, explicit or imphcit, of x and y, M
must vanish identically, otherwise the equation M — o will

establish some such relation.

On the other hand, if J/ vanish identically, (^^ will reduce

to Z, and we infer that, as it depends solely upon quantities at

the limits, U is immediately reducible to a single integral.

468. Now we can determine what form Fmust have to

render this reduction possible. For

M=^V,- F/- F,,; (2)

and ifM is to vanish identically, it is evident, in the first place,
• that all terms containing/, q, r, j and / must vanish. But we
have seen (Art. 428) that when, and only when, Fis of the

form/j +/2/ 4-/3^, the equation M —o will fail to rise above

an order n — 2\ that is, 2 — 2.

Such, then, must be the form of F; but that J/ may en-

tirely vanish it will be necessary, in addition to this, that/j,

f^ and /g, which are all functions of x, y and z only, shall be

subject to a certain additional relation. For we have

V^=j-^' ^P^f^' v^=U
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SO that the equation M= o, after rejecting terms containing
differential coefficients of z, gives

dz dx dy
^

and the /'s must be so related as to render this equation also

identically true.

4-69. Although not very rigorously demonstrated, the

foregoing are all the leading theorems relative to this subject,

and it would be unprofitable to pursue it further. For while

the calculus of variations gives us the means of determining
whether or not V is immediately integrable, it does not of

itself indicate the method of effecting the integration; and

this method is what we wish chiefly to know.

The theorems given in the preceding problems relative to

this subject, which is often called the theory of integrability, or

the conditions of integrability, can be established without the

aid of the calculus of variations, but less easily.

The reader who may wish to pursue this subject further

is referred to the treatise on the calculus of variations by Prof.

Jellett, Chap. X., and also to Todhunter's History of the Calc.

of Van, Chap. XVII.



CHAPTER V.

HISTORICAL SKETCH OF THE RISE AND PROGRESS OF THE
CALCULUS OF VARIATIONS.

470. Questions of maxima and minima were among the

first to occupy the attention of mathematicians after the in-

vention of the differential or fluctionary calculus, which,

according to Woodhouse, occurred about the year 1684, or

three years prior to the publication of the Principia. The

ordinary calculus was not, however, given to the world at

once in a single treatise, but was developed gradually in

essays, in communications to learned societies and journals,
and in letters between men of science.

The first question considered, of that particular species of

maxima and minima which forms the chief subject of the cal-

culus of variations, appears to have been that of the solid of
minimum resistance ; and this was first proposed by Newton
in the Principia. But although Newton was the first to con-

sider a question belonging to the calculus of variations, no

importance seems to have been attached to this problem either

by himself or his contemporaries, and it did not become at that

time the subject of discussion.

The true beginning of our science dates from the month
of June, 1696, when John Bernoulli, Professor of Mathema-

tics at Groningen, proposed in the Acta Eruditorum (or

Doings of the Learned), a work then published at Leipsic,

and at that time the chief medium of communication between

men of science and letters, the following problem :
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"Problema Novum*
"Ad cujus solutionem mathematici invitantur.
" Datis in piano verticali duobus punctis A et B, assignare

mobili J/viam AMB, per quam gravitate sua descendens, et

moveri incipiens a puncto A, brevissimo tempore perveniat
ad alterum punctum B.''

This problem engaged at once the attention of Leibnitz,

James Bernoulli, brother of John, and Professor of Mathe-
matics at Basle, and the Marquis de I'Hopital, the first two
of whom appear to have solved the problem within the allot-

ted time, which was six months. Leibnitz at once forwarded
his solution to the proposer, asking that it might not be imme-

diately published, in order that other mathematicians might
be encouraged to attempt the problem ;

and he subsequently,
as no solution appeared, requested that the period might be

extended, a request with which John Bernoulli compKed, and

accordingly reannounced the problem in a programme dated

at Groningen, Janua;-y, 1697. Upon learning of this exten-

sion, James Bernoulli retained his solution, being desirous, as

he stated, of investigating and adding to the problem certain

others of a similar character
;
which he did, as we shall subse-

quently see.

In the Acta for the following May were published the solu-

tions of the two Bernoullis, together with one by De I'Hopi-

tal, the last being without demonstration. James is in advance
of his brother

;
but as his solution is given by Woodhouse, it

will here suffice to say that both brothers assume the prin-

ciple that whatever maximum or minimum property is pos-
sessed by the whole of any required curve must be possessed
also by every portion of the curve

;
and that therefore, if

* " A New Problem, to the solution of which mathematicians are invited.
" Given two points A and ^ in a vertical plane, to find for the movable (par-

ticle) M, the path AMB, descending along which by its own gravity, and begin-

ning to be urged from the point A, it may in the shortest time reach the other

point B.''
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we consider the required curve as a polygon of an infinite

number of sides, it will be sufficient to consider two consecu-

tive sides or elements. But this principle, while it enabled

them to obtain in this case a correct result, is not universally
true.

47 (. At the close of his paper James Bernoulli proposed
two additional problems : first, to determine the curve of

quickest descent from a given fixed point to a given vertical

line
;
and second, among all curves having a given length and

a given base, to find the curve such that a second curve, each

of whose ordinates is some function of the corresponding or-

dinate or arc of the first, may contain a maximum or minimum
area. But although in the first of these problems we have
a particular case of the question subsequently considered by
Lagrange as to what conditions must hold at the limits in

maximizing or minimizing a definite integral, little appears
to have been effected in this direction prior to the re-

searches of that mathematician
; so that we shall follow the

second problem only.
The second case of this problem led to an acrimonious

discussion between the Bernoullis which was little creditable

to John. For still adhering to the principle mentioned at

the close of the last article, which in this case fails, owing to

the isoperimetrical property that the required curve must
have a given length, he continually obtained erroneous re-

sults
;
nor would he frankly acknowledge his error after it

had been indicated by his brother. No solution of this prob-

lem, however, appeared until James BernouUi, in May, 1701,

published his in the Acta; although a solution without demon-
stration had appeared in the Acta for the preceding June. In

this demonstration three consecutive elements of the required
curve are taken instead of two, and a rude mode of imposing
the isoperimetrical condition is shown. A solution much
more finished, but evidently borrowed from that of his
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brother, was subsequently published by John Bernoulli in the

Memoirs of the Academy of Science for 1718 ;
and this solution

may be found in Woodhouse's Isoperimetrical Problems.

But no further advance, worthy of notice in a sketch like

the present, appears to have been made until the advent of

Euler.

472. The first contribution of this mathematician to our

science was a memoir published in the sixth volume of the

Ancient Commentaries of Petersburg, 1733. In this memoir

Euler, taking up the subject where it had been left by the

Bernoullis, divided his problems into classes : the first including
those of absolute maxima and minima, the second those prob-
lems of relative maxima and minima in which but one restriction

is imposed upon the variations, as in the problem of the bra-

chistochrone when the path is to have a given length ;
while

the third included those relative problems in which two re-

strictions are imposed, as when the brachistochrone path is

to have a given length and also to enclose, with the aid of its

extreme ordinates and the axis of x, a given area. The erro-

neous principle that the maximum or minimum property of

the whole curve belongs to each portion also was virtually

adopted, two consecutive elements only being considered in

the problems of the first class, three in those of the second,

and four in those of the third. Nevertheless, as he proceeded,
he established and tabulated formulse—twenty-four in all—for

the various cases which might arise
;
and by this means was, at

the close of this memoir, much in advance of the Bernoullis.

About the year 1740 or 1741 Euler summed up his re-

searches in a second memoir published in the eighth volume

of the Commentaries of Petersburg, the date of the volume

being 1736. But this date proves nothing, as the same volume

contains observations made in 1740. Euler had now discov-

ered that when F is a function of x, y, y,. . . . y^^\ his previous
formulae might be expressed by one more general formula.



HISTORICAL SKETCH. 545

which is still in use, and which we have denoted by the equa-
tionM = o.

Also, the principle that the maximum or minimum

property of the whole curve will belong equally to every

portion was examined, and shown, in some cases at least, to

be untrue
;
and lastly, some advance seems to have been made

in the treatment of problems of relative maxima and minima.

By this memoir the calculus of variation was greatly im-

proved, and it contained, in fact, nearly all that its author

ever discovered relative to this subject, although in a very
confused and ill-arranged form.

In 1744 Euler published a tract entitled Methodiis inveni-

endi Lineas curvas Proprietate maxwii mininiive gauderitesJ^

This work, which was the most famous of its author re-

lative to this subject, displa3^s an amount of mathematical

skill almost unrivalled. Problems were here, as at present,
divided into two great classes, absolute and relative, and the

treatment of the second was for the first time reduced to a

perfect science by the discovery of the artifice still employed,
and termed the Method of Euler. This work is also general-

ly clear and systematic, containing an abundance of examples,

including, with many others, most of those given by us m
our first chapter ;

and at its close Euler had carried our

science so far beyond the point which had been reached by
the Bernoullis that he may, almost equally with Lagrange, be

regarded as the author of the calculus of variations.f

Euler subsequently published in the tenth volume of the

New Commentaries of Petersburg, i 'j66, two memoirs
;
in

the first of which, entitled Elejiienta Calculi Variatiouum (or

* " Method of finding curved lines enjoying the property of maximum or

minimum."

f The preceding account has been taken almost entirely from Woodhouse's

Isoperimetrical Problems; but for what follows we are indebted chiefly to

Todhunter's History of the Progress of the Calculus of Variations during the

Nineteenth Century.
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Elements of the Calculus of Variations), he first gives our

science its present name
;
while in the second he enunciates

the theorem of Prob. LXVIII. : this being apparently the

first investigation ever made relative to the conditions of in-

tegrability. Subsequently in his Integral Calculus, 1770, he

extended the theorem to two dependent variables, as in Prob.

LXX.; while Lexel, in 1771, established the principle of Prob.

LXIX.

473. Prior to this period Lagrange, w^ho is commonly re-

garded as the author of the calculus of variations, had com-

menced his labors. But as we have not space to consider his

writings in detail, we shall merely indicate the particulars in

which he improved our science.

First. Much ambiguity and awkwardness had previously
arisen from the want of a good method of distinguishing be-

tween ordinary differentials and those differentials or incre-

ments which we now call variations. This difficulty Lagrange
overcame by the invention of the symbol d, which, like dy

could denote either an increment or an operation, and proved
of the highest importance.

Secondly. The formula M =z o, and others, had been de-

rived by Euler from geometrical conceptions by breaking the

integral, or the required curve, into parts, and operating labo-

riously upon two, three, or four consecutive elements. But

Lagrange, by deriving these formulae by the methods now in

use, shortened the processes of obtaining them, and placed our

science upon its true analytical basis.

Thirdly. The formulae of Euler determined merely the

nature of the required curve, its extremities being supposed
to be fixed. But Lagrange, in what he termed the definite

equations, first gave the form and the interpretation of all

those formulae which are still employed when the extremities

of the required curve are not fixed, and which we have called

the equations or terms at the limits.
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Fourthly. Lagrange invented that general method which

is still employed, and known as the Method of Lagrange, and

which enables us by the use of one or more indeterminate

multipliers to discuss those cases in which the variables are

connected by an implicit relation merely ;
that is, by a differ-

ential equation which is not integrable.

Lastly. Lagrange first attempted to extend the calculus of

variations to the case of double integrals. This he did by
discussing Prob. LVIL, obtaining our equation (lo), Art. 366,

without considering the terms at the limits.

4-74. In the year 18 10 appeared an English work, entitled
" A Treatise on Isoperimetrical Problems and the Calculus of

Variations," by Robert Woodhouse, A.M., F.R.S., Fellow of

Caius College, Cambridge. The first five chapters of this

work, which is a small octavo of 154 pages, with 9 pages
of preface, are devoted to a careful history of the subject to

the time of Lagrange, and are all that are now of any in-

terest, the remaining three containing little history of im-

portance.
The subject having been next, but not very successfully,

treated by Lacroix in his Traits du Calad Diffei-enticl et du Cal-

cul Integral, second volume, second edition, 18 14, there ap-

peared two German works. The former, by E. H. Dirksen,

which is a small quarto of 243 pages, with 8 pages of preface,

was published at Berlin in 1823, and is entitled "Analytical
Exhibition of the Calculus of Variations, with the Applica-
tion of it to the Determination of Maxima and Minima."

The latter is entitled " The Theory of Maxima and Minima,"

by Dr. Martin Ohm, Berlin, 1825, and is an octavo of 330, with

a preface of 18 pages.
None of these works, however, extended the calculus of

variations, and we now resume the history of its progress.

475. The first discussion of the discrimination of maxima
and minima appears to have been undertaken by Legend re,
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who, about the year 1787, elaborated the method already men-

tioned in Art. 187, and which was published the following

year in the History of the Royal Academy of Science. This

method was subsequently adopted by Lagrange, although he

indicated the defect noticed in the above article. This method
is explained in Todhunter's History of the Calculus of Varia-

tions.

Legendre seems also at the same time to have given the

first instance of a discontinuous solution by showing in the

discussion of Prob. XV. that it might be necessary for the re-

quired curve to be in part rectilinear.

In the Memorie delV Istituto Nazionale Italiano^ Vol. II.

Part II., Bologna, 18 10, Brunacci extended the method of

discrimination to the case of a double integral ;
and although

his method is open to the same objection as that of Legendre
for single integrals, he succeeded in establishing all the con-

ditions relative to Fpp, f^g and F^g mentioned in Art. 431;
and their discovery appears to be due to him.

476. The variation of a double integral when the limits are

also variable, the exhibition of the terms at the limits so as to

determine the conditions which must there hold, and the vari-

ation of a multiple integral in general, were subjects which
had not yet been investigated, and they next engaged the at-

tention of mathematicians.

Three memoirs were pubhshed bearing more or less

directly upon these subjects : the first by C. F.Gauss in 1829,

the second by Poisson in 1 831, and the third by Ostrogradsky
in 1834. But while these writers effected much, they did not

succeed in determining in a general manner the number and
form of the equations which must subsist at the limits in the

case of a double or triple integral.

477. In the seventeenth volume of Crelle's Mathematical

Journal, 1837, appeared a memoir, entitled "On the Theory
of the Calculus of Variations and of Differential Equations," by
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C. G. Jacobi. This memoir, which purports to be an extract

from a letter to Professor Enke, is devoted partly to the cal-

culus of variations and partly to dynamics. In the first part

Jacobi elaborated, but without demonstration, the theorem
which bears his name

;
that is, he assumed the truth of our

lemmas, not even giving the forms of the functions A, A^, A^,

B^, etc., although he determined the form of u, and merely
touched upon the connection between u and v. See Art. 174.

This brevity rendered the theorem the subject of numerous

commentaries, as we shall presently see.

Jacobi also touched upon the mode of transforming the

terms of the first order in the variation of a double integral,
but effected nothing of importance.

4-78, In 1 841 were published three memoirs relative to

Jacobi's theorem : the first two by V. A. Lebesgue and C.

Delaunay, in the sixth volume of LiouwiWe's /oicrna/ 0/Matke-

mattes, and the last by Bertrand in Xh^ Journal de VEcole Poly-

techniqite. The proof given by Delaunay is that which we
have followed in our notes to Lemmas I. and II., and he has

been generally followed by subsequent writers.

479. As, notwithstanding the labors of Gauss, Poisson,

Ostrogradsky and Jacobi, no general method of treating the

terms at the limits in the case of multiple integrals had yet
been discovered, the Academy of Science, Paris, 1842, pro-

posed for its mathematical prize the following subject: To
find the limiting equations which must be combined with the

indefinite equations in order to determine completely the

maxima and minima of multiple integrals ;
the formulas to be

applied to triple integrals.

Of the four memoirs presented, that by Sarrus was ad-

judged worthy of the prize, while that by Delaunay received

honorable mention
;

the examiners being Liouville, Sturm,

Poinsot, Duhamel and Cauchy.
The memoir of Sarrus is entitled Recherches sur le Calcul
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des Variations^ and may be found in the tenth volume of the

Savants Etrangers, 1846, and occupies 127 quarto pages. By
means of his new symbol of substitution, Sarrus may be said

to have solved the problem proposed by the Academy, and
his memoir is one of the most important contributions of the

century. But this sign of substitution as invented by Sarrus,
besides having an inconvenient form, signified merely the sub-

stitution of a particular value of a variable for its general
value, and his method therefore lacked brevity.

The treatment by Delaunay is much less general, assuming
that in the case of double integrals the limiting cylinder or

surface is to be continuous and closed. His memoir was pub-
lished in the 29th cahier of the Journal de VEcole Polytech-

niqiie, dated 1843, ^^^d seems to have been followed by all the

writers on the calculus of variations subsequent to Moigno
and Lindelof.

4-80. The next advance was made by Cauchy in a memoir
on the calculus of variations published in the third volume
of his Excrcices d'analyse et de Physique Mathhnatiqiie, 1844,

extending^ from page 50 to page 130. This memoir is little

else than a reproduction of the investigations of Sarrus, but
in it Cauchy effected much of the needed condensation by
giving to the sign of substitution, like that of integration in a

definite integral, the power of denoting substraction also,

while its form was changed to that which we have adopted.
For further particulars regarding this part of our subject the

reader who does not wish to examine the original memoirs

may consult the chapters on Sarrus and Cauchy in Todhun-
ter's History of the Calculus of Variations.

48(, We must next notice some systematic treatises which
now appeared.

As a successor of Woodhouse there appeared
" A Treatise

on the Calculus of Variations," by Richard Abbatt, London,
1837. This is an octavo of 207 pages, with 11 pages of pre-
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face, but is of no great importance at the present day, and

could hardly be regarded as a complete treatise.

In the year 1850 appeared a work entitled '' An Elementary
Treatise ori the Calculus of Variations," by the Rev. John

, Hewitt Jellett, A.M., Fellow of Trinity College and Profes-

sor of Natural Philosophy in the University of Dublm. This

work, which is an octavo of 377 pages, with an introduction

and preface of 20 pages, is one of the most important which
have appeared in any language, and is not elementary as its

title would imply. But Prof. Jellett had not, as he himself

tells us, been able to peruse the memoir of M. Sarrus, while

that of Cauchy is not mentioned by him at all. Hence his dis-

cussion of multiple integrals, in which he follows that memoir
of Delaunay which received honorable mention by the French

Academy, is defective, and cannot be recommended to the

student.

Ohm's treatise was succeeded by a voluminous work by
Dr. G. W. Strauch, entitled Theorie und Anwendung des soge-

nannten VariationscalcuVs^ Zurich, 1849. This treatise consists

of two closel}^ printed large octavo volumes, the first contain-

ing 499 pages, with 32 pages of preface, and the second 788

pages ;
and is chiefly valuable for its great number of carefully

solved examples, and historical notes, although, as might be

expected, much of the matter has little or no connection with

the calculus of variations. Strauch does not exhibit the

theorem of Jacobi, although he generally examines the terms

of the second order, employing the method of Legendre and

Lagrange without even noticing its defect. He is also like

Jellett deficient in the treatment of multiple integrals, not fol-

lowing the method of Sarrus and Cauchy. Strauch sub-

sequently, in 1856, presented to the Academy of Sciences in

Vienna a memoir entitled Anwendujig des sogenannten Varia-

tionscalcuVs auf zzvcifache und dreifache Integrale, and pub-
lished in the i6th volume of the Denkschriftc7i of the Acad-

emy, 1859, where it occupies 156 large quarto pages; and in
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this memoir he even declares that Sarrus and Cauchy did not

solve the problem, proposed by the French Academy. His
own memoir is, however, of no importance.

In a few years appeared another German w^rk by Dr.

Stegmann, entitled Lehrbuch der Variationsrechnung und ihrer .

Anwendimg bei Untersuchungen fiber das Maxiinum und Mini-

mum^ Kassel, 1854. This is an octavo of 417 pages, with 16

pages of preface, but is not so rich in examples as is the

treatise by Strauch, while it possesses the two defects men-

tioned in connection with that treatise.

Prof. Bruun published in the Russian language
" A Manual

of the Calculus of Variations," Odessa, 1848, which is, accord-

ing to Prof. Todhunter, an octavo of 195 pages.
We may mention, finally, that Prof. Price in the second

volume of his Treatise on Infinitesimal Calculus, Oxford,

1854, devoted more than 100 pages to our science, explaining
the theorem of Jacobi, and touching upon the subject of

double integrals.

482. After the publication of the three memoirs mentioned

in Art. 478, the subject of the discrimination of maxima
and minima was not considered for about ten years, after

which it was resumed earnestly by mathematicians in papers,
some of which we will next mention.

In the third volume of Tortolini's Annali di Scienze Mathe-

matiche e Fisiche, 1852, appeared an article of more than 40

pages by Prof. G. Mainardi, claiming, but without good rea-

son, to exhibit a new method of discriminating maxima and

minima. But he also extended Jacobi's theorem to double

integrals, and his method has been followed by us in treating
this subject.

In the same volume appeared a short article on the same

subject by Prof. F. Brioschi. Mainardi had indicated the

value of the theory of determinants in connection with the

exhibition of the terms of the second order, and Brioschi
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employed it freely, this being apparently the first attempt to

apply determinants to this subject.

There next appeared a quarto pamphlet of 20 pages

regarding Jacobi's theorem, entitled Untersiichungen ilber Varia-

tions-rechnung. Inaugural-Dissertation von Dr. Friedrich Eisen-

lohr, Manheim, 1853.

The subject was next considered in a work entitled " On
the Criteria for Maxima and Minima in Problems of the Cal-

culus of Variations," which was presented by Spitzer to the

Academy of Sciences at Vienna in 1854. This work consists

of two memoirs occupying together more than 135 pages, the

first being published in the 12th and the second in the 14th

volume of the Sitziingsberichte of the Academy, and to these

memoirs we are indebted for the exceptions which we have

noticed in connection with Jacobi's theorem. But Mainardi

and Spitzer did not confine themselves to the development of

Jacobi's theorem, but sought rather to establish new methods

of their own, both of which are, according to Prof. Todhunter,
"
Legendre's method improved by additions borrowed from

Jacobi."

In the 54th volume of Crelle's Mathematical Journal^ 1857,

appeared a memoir by Otto Hesse, entitled " On the Criteria

for the Maxima and Minima of Single Integrals," extending
over pages 227-273. Hesse confines himself exclusively to

the application of Jacobi's theorem to smgle integrals involv-

ing only one dependent vajriable, and his memoir is the most

elaborate which has yet appeared regarding this subject.

See Arts. 184, 186.

In the 55th volume of Crelle's Mathematical Journal, 1858,

appeared a memoir by A. Clebsch, entitled
'' On the Reduction

of the Second Variation to its Simplest Form," and extending
over pages 254-273. The object of Clebsch was to general-
ize the theorem of Jacobi, and to supply investigations like

those of Hesse for the case in which the single integral con-

tains several dependent variables with or without connecting
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equations, and also for multiple integrals. The former point
had not, so far as the author knows, been hitherto discussed,

but the latter had been considered by Mainardi. The subject

of multiple integrals is resumed by him in a third memoir,

entitled
'* On the Second Variation of Multiple Integrals," and

published in the 56th volume of Crelle's Mathematical Jojir-

naly 1859, where it extends over pages 122-148. His second

memoir is
" On those Problems in the Calculus of Variations

which involve only one Independent Variable," and is in the

same volume which contains his first memoir.

483. We now come to a most valuable work, enti-

tled ''A History of the Progress of the Calculus of Varia-

tions during the Nineteenth Century," by I. Todhunter,

M.A., Fellow and Principal Mathematical Lecturer of St.

John's College, Cambridge. Macmillan & Co., London, 1861.

This volume is a large octavo of 530 pages, with 10 pages of

preface, and, taken together with the first five chapters of

Woodhouse, furnishes a complete history of our subject.
But in addition to the mathematics necessary to the histori-

cal sketches, much of which has been superseded by bet-

ter methods, Prof. Todhunter has frequently introduced these

better methods, and has given such other investigations of his

own that his work contains nearly all the matter necessary to

form a modern treatise, although, from the nature of the case,

it is so arranged as to be of little service to the reader who is

not already tolerably familiar with the calculus of variations.

We append the subjects of the seventeen chapters : Chap. I.,

Lagrange, Lacroix
; II., Dirksen, Ohm ; III., Gauss ; IV., Pois-

son
; v., Ostrogradsky ; VI., Delaunay ; VII., Sarrus

; VIII.,

Cauchy ; IX., Legendre, Brunacci, Jacobi ; X., Commentators
on Jacobi ; XL, On Jacobi's Memoir ; XIL, Miscellaneous

Memoirs
; XIIL, Systematic Treatises

; XIV., Minor Treatises ;

XV.', XVI., Miscellaneous Articles; XVII., Conditions of

Integrability. The last chapter is a complete history of the
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subject from the earliest times as it had not been mentioned

by Woodhouse, nor had its history been given by any pre-
vious writer.

4-84. A few months subsequently, but during the same

year, 1861, appeared the last systematic treatise, the Calcul

des Variations, by Moigno and Lindelof. But the title-page of

this work, which is a small octavo of 352 pages, with 20 addi-

tional pages of preface, introduction, etc., presents it in the

beginning as merely the fourth volume of the Lemons de Calcid

Differentiel et de Calcul Integral, by M. I'Abbe Moigno, the

distinctive title following subsequently. According to Moigno,
the chief credit of this work, which is the only complete
treatise in the French language, belongs to his colleague, M.

Lindelof, then a. young professor from the university of

Helsingfors in Finland, who had made the calculus of varia-

tions a specialty, and who gave Moigno freely the benefit of

his knowledge.
This treatise was the first to present a satisfactory account

of the conditions which must hold at the limits when we wish

to maximize or minimize the double or triple integral. But

although the methods followed are substantially those of

Sarrus and Cauchy, the authors have, in many cases, greatly

simplified the formulae of their masters
;
and to this portion of

the Calcid des Variations the present author is almost entirely

indebted for the discussions which have been presented in

Chapter III.
; although the view of variations adopted by

Moigno and Lindelof is that followed by Sarrus, and which

has been explained in Section VL Chap. IIL

485. It had long been known that a discontinuous solu-

tion might become necessary in certain problems. But

although particular cases had been discussed by Legendre
and others, nothing resembling a general theory of such

solutions had yet been propounded.
In the Philosophical Magazine for June, 1866, Prof. I. Tod-
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hunter first announced the principle that variations might
be of restricted sign, thus rendering it unnecessary for the

equation M — o \.o hold throughout C/; and this may be

regarded as the fundamental principle of the theory in ques-
tion. This discovery appears to have been due mainly to the

difficulties presented by the consideration of Prob. XVI.
In 1869 this subject was proposed at Cambridge for the

Adams Essay, and elicited from Prof. Todhunter in 1871 the

prize essay, which, with slight alteratfon, was published in the

same year by Macmillan & Co., under the title
" Researches

in the Calculus of Variations."

This work, which is an octavo of 278 pages, and 8 pages
of introduction, is certainly the most important original con-

tribution which our science has received since the appearance
of the essay of Sarrus, inasmuch as, -in it, the author, while

discussing incidentally many other points of interest, did for

the theory of discontinuous solutions, what Sarrus did for that

of multiple integrals. The case of single integrals only is dis-

cussed, and these are, with a few exceptions, supposed to

involve but one dependent variable. The theory is, how-

ever, abundantly illustrated by examples ;
and we cannot too

strongly recommend the work to our readers, since, from it,

we have derived most of what we have presented in Section

IX, Chap. I.



NOTES.

NOTE TO LEMMA I.

To establish this theorem, which belongs entirely to the differential calculus,

we shall employ the symbolic language, or, as it is sometimes called, the calculus

of operations. (See De Morgan's Diff. and Integ. Calc, page 751; also Boole's

Diff. Eqs., Chap. XVI.)
Let d denote differentiations with respect to k only, and D with respect to 8y

only, both k and 8y being regarded as functions of x, and the differentials with re-

gard to X being total. Then any order of total differential of any function of k dy

may be written {d-\- DY of that function. Now putting v for pair (4), we have

v=\{d-\- DY D^ ± {d-\- DY D^lk 8y

= id -{• ny D\{d -\- D)"'-^ ± D^'-^kdy

= X\{d-^D)^-^ ± D^-^k Sy, (I)

where

X={d-ir D)D = dD + D\ (2)

It must, however, be remembered that ^does not denote a quantity, but merely a

mode of differentiation, and that seeming exponents as 2, n, etc., do not indicate

powers, but the number of times that a certain mode of differentiation is per-
formed.

Now from (2) we have

Z?2 4-^Z)+^ = ^_|_X=-(^'^+ 4^), (3)
4 4 4

or
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the first member of (4) denoting differentiation twice according to a predetermined

method, the second differential having been rendered perfect by the addition of

another differential, just as the square is, in quadratics, by the addition of a square.

Hence, solving as in quadratics, we obtain

Z) =
I|_^± (^2+ 4^)1

I
(5)

and

d^D = l\d±{d'-^^^Xf \^\{d±r\ (6)

r dqpoting also a mode of differentiation only.

Now put n for m — /. Then in (i), by the use of (5) and (6), we have

{d-\- Dr-^ ± n^-i = (^+ ny ±D^ = \ \{d±rY ±{-d± rf \
, (7)

the positive or negative sign being used according as n is even or odd.

If we first suppose n to be even, and expand both binomials by the binomial

theorem, and add the results, then, since each term which does not cancel

becomes double, we shall, after multiplying
— by 2, have

dn _|_
'!kL_l\ dn- 1 ^2 _|_ etc.

^
. (8)

Let us next suppose n to be odd. Then the development will assume the same

form, because the sign connecting the two binomials will be negative, so that

we shall have always

(^+ Z))— ^± /)—'::= ^J«'~ + ^^^^^^"-V2-f- etc.
I

. (9)

But since r^ = d^ -^ 4X, we will suppose the values of r\ r\ etc., in (9) to have

been found and arranged according to the ascending superscripts of X. Then

there will occur in r^, r*, r^, etc., one term involving d, but not X; and this term,

when combined with its component outside of r, which will involve d, will always

become d» multiplied by some function of n. Therefore the development may be

written 4^

(d-^D)'^-^ ± B'^-i = ad^ -{- dd^-'^X -{- cd^-"^ X^ -}- etc., (10)

where a, d, c, etc., are functions of n and numbers merely. Hence from (i) v^e

have
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We have now only to abandon the symbols of separation by performing the

operations which they indicate, thus: ,

^ dx^ dx^
^

dx^

and since d-\- D denotes total differentiation, we have

^^5/0; (12)

{d^D)^ci8yfJ) =
^^ci8yif).

Proceeding in like manner with the other terms in (ii), we shall finally obtain

d^ ^? + i

where

2,nd

ci = —— ak,
dx'^

O+i
dx'^-

hh <:i+i =
dx^-^ ck,

(13)

(14)

- ^
i r _L ^(^ - ^)

I
^(^ - ^){n

-
2){n

-
3)

,

) 1

^(^?
-

I) _L 8 ^^(^
-

i)(^?
-

2){n
-

3)
^^^

)

b =

c = -^- i i6
2n
— 1 '

^(n —
j)(n

—
2)(n

—
3) + etc.

(15)

Now the application of (13) is in reality simple. For we see that for any given
value of n its number of terms must always be the same as that of equation (9).

Hence there will be but one term when « is i, two when w is 2 or 3, three when
« is 4 or 5, etc. Moreover, it will be found from (15) that a is always unity, and

that 5 = n when n has any value from 2 to 5 inclusive, and that c = 2 when n is

4, and is 5 when « is 5.
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NOTE TO LEMMA II.

The integration may be effected as follows: Multiply equation (i) by ut, and

subtract the product from (2). Then we have
«

d d^ d d'^U=u— Ai{ut)' -\- u —J A'i{ut)" 4-etc.
— ut— Aiu' — ut-—Aiu" — etc.

*

( d™- d™- 1

Now we know that if F and Q be any two quantities, we shall have

pQin) := (pQyn) _ ;^(p'0(«-l) _|_
''^''

~
1^

(/'"0(«-2) _ etC. (2)

For let d denote differentiations with respect to Q, and D with respect to F. Then
we shall have

PQ(.n) ^ d^FQ, {FQf^) = {d-{- DYFQ, (P'0(«-i) = {d -\. Z?)«-i DFQ, etc.

Now in the cases which we shall consider n will be a not large positive integer,
and it will therefore readily appear by trial that

d^ = (d-\- BY -
n{d-\- I)Y-^D-\-

''^'^~^^
(^+ Z))«-2/)2 _ etc. ± i>.

Hence if we select any term of (i), as

d™'

u-^Am{uti'^'>
or ulAm{utY'^')Y^'^,

and put u for F, and the other factor for ^"^we obtain, by the use of (2),

u [An, («/)W]W = [uAr^ (w^)^]^ _ m [u'Am (z//)('")]('"-i)

+ ^(^ - ^

iru"Ar. (uf)('-)](^-^)
- etc. (3)

But

(«/)(»»)
= «/(»«)+ W«7(«-l) +^ ^

«"/(m-2)_|_ etc. (4)
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Substituting this value in (3), each term may expand into a series, each series

having the superscript of the term from which it was derived. Now consider

any series, and let its superscript be/, so that it must be the m —p -\- \ xn order,

and every term must contain the factor u^"^~p^ Am. Now for an individual term,

take that in this series whose order is m — q-\-i, or q -\- i when we begin at the

last. This term will be of the form

where k = u^-'^-p^ Am «("*-?>, and

(5)

^^^ _^
^^(^- I)- • • (/+!) mjm-i) (^4-1)

I, 2, 3 .... (w —J>) I, 2, 3 . . . . (?n
—

q)
'

while / and q must be some positive integer, or zero, and m some positive integer.

Now Up and q be unequal, there will, supposing/ greater than q, certainly arise

in the series whose superscript is ^ a term of the form

dod \ dxP i

the signs being like or unlike according asp — q is even or odd. '

Hence, by the

theorem of the preceding note, all the terms in 2u -— Am {uff^"' in which/ and q

are unequal may be transformed, so that by adding those in which p and q are

equal, which have already the required form, we may write

^«^ ^- («^>'"^ = ^'+^ ^^''+^ ^^'" + "'"• ^7)

But if the dJ£ferentiation indicated in the first member of (7) were performed, it is

evident that the terms which would contain / undifferentiated would be

^u {Am «<'"))('») t=Bt=z ^ut {Am «<'"))('»). (8)

Hence it appears from (i) that all the terms containing t undifferentiated will

disappear from U, and we shall, therefore, have

^=l^-''+;^^^'"+"=- fe'

Therefore

/
d

Udx = Bit' -\ B-i t" A- etc. (10)
dx
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NOTE TO ART. 369.

Let A, B and C denote the angles made by the normal with x, y and z respec-

tively, and let the Greek letter | (xi or x) denote the angle made with the plane
of xz by the plane which contains the normal and is parallel to z, and r} (eta or e)

c
be / tan — or I tan c, so that, e being the Napierian base, we shall have

C
en = tan — = tan c.

2

Our object is now to change in (10) the independent variables from x and >/ to ^

and 77. We have

. ^ • . 2 sin r „ 2 tan c 2evsm C = sm 2c = 2 sm ^ cos <r = cos^^r =—
;

— ——---, (i)cos^ I +tan'-^r 1+ ^27,
' ^V

(cosV

\
-:—i I sin^^
smv

j

tanV _ e—'m — i

I

"
^-2i?4- I

' tanV

(2)

These equations will enable us to express sin C and cos C in terms of cos rf and

tan 77; but the process will evidently involve the theory of hyperbolic sines,

cosines, etc. We may recall from this theory the following formulae, putting i for

I I ^^*" — I
sin u = — (<?»«

—
<?~*"), cos u— -

(,?'« -f- e-»"), i tan u =
^^^ (3)

These formulae occur in De Morgan's Diff. and Integ. Calc, pages 114 and 119,

except that we have put u for on the first page, and for x on the second. Now
if in the second and third of these equations we put irf for «, we shall have

I / . N ^^'J+i • • e-'»i—i . .

costn = - U-v4-eri) = —
,

z tan ir/
=—-—

j

—
(4)

Hence from (i) and (2) we have

sin C = r-, cos C = i tan in. (5)
cos trj
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Now it is evident that

cos ^ = sin C cos 6 = -^^ ,
cos -5 = sin C sin | = (6)

cos trf
cos IV

Hence equation (10) Art. 366, now becomes

d cos h _,d_ sin % __

dx cos i7] dy cos ir}

-sin4i + cos^|-
+ aan.-^|cos^g

+ sin^J[=o,

(7)

in which we must next determine the values of the partial differential coefficients

d^ dc, drj
,

dri

-J-, --, -- and --•
dx dy ax dy

Let X, V and Z be the co-ordinates of any point of any tangent plane to the

required surface, and D the distance of this pla^ne from the origin. Then we

shall have

Jf cos ^ + F cos ^ + Z cos C =r Z>
;

and substituting in this the values of cos A, cos B and cos C, and multiplying by

cos ir/, we have t

Xcos ^-\-V sin q-\- Zi sin ir/
= D cos irj

= —
C, (8)

the Greek letter zeta being used for convenience only. But since (8) represents

the equation of any tangent plane, and every point of the required surface lies on

one of these planes, the equation of this surface may be written

^
X cos k -\-y sin ^ + zi sin t7j

= —
C, (q)

where C is no longer constant, but must be such a function of ? and 77 that the

variable Z> may always have the meaning just assigned. Moreover, we may
regard every point of the required surface as lying at the intersection of three

tangent planes drawn indefinitely near, so that in the second ^ may become

? 4" ^^. V remaining unchanged ;
and in the third 7 may become 7+ d?/, ^

remaining unchanged ; | and 7/ themselves belonging to the first. Hence we
have a right to differentiate (9) with regard to c, and 7; separately, treating x, y
and z as constants. Performing this operation, we have

X sm ^
— y cos ? = —

-, z cos tn = —-•
(,10)

dq
'

drj
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Next assume, for brevity,

di] d^^ d^drf
'

dr]
^

drf ^ '

We have also, from (9) and the last of equations (10),

— {x cos I +/ sin ^) = C + zi sin iv, zi sin irj
= i tan ir/

—- •
'

(12)

We will now differentiate equations (10) and (11), reducing by means of the equations
whose first members are the bracketed quantities, and supposing the last to have

been obtained first, so as to employ it in reducing the first. Thus we shall have

dx cos ^-\-dy sin ^=\x sin ^ —y cos ^] d^ — i sin irf dz

dC dC+ [z cos tr/] dV — -^d^
—

--dr]

= — d\zi sin i7J\
=^ — i tan irf (v d^-\- w dff),

d% d%
dxsin ^ — dyzos ^ = —

[^ cos ^+_ysin ^]^|+— d^-\--jr^drj

d'K dK= Z,dh + [zi sin irj] ^^ +— ^| +-—-
drj = udk-\- vdrf,

d'^Z, d^C,
dz cos i?/

=
[zi sin iy] dr]+ -ir~^ dk +-7-Y drj

— v dc, -\- v) drj.

(13)

d^d^
^

'

di

Now if in the first two of these equations we first make dy zero in each and

divide by dx, and then dx zero in each and divide by dy, we shall obtain four

equations, the first two of which will each contain— and —
,
and the last two of

which will each contain —- and -7^; and these differentials will then become the
dy dy

partial differentials sought. Then finding the values of these differentials by
common algebraic methods, we shall have

d'q _ wi tan irj sin ^ — v cos I

dx i tan irj {uw -\- v^)

dr} _ vi tan irf sin ^ — « cos I

dx i tan ir] {uw -\- v^)

d^ _ wi tan irf cos | -}" ^ sin g

dy
~

i tan irf (uw -f- v^)

drf _ vi tan irf cos I+ « sin |

dy
"

i tan irf {uw -\- v^)
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If now we substitute these values in equation (7), observing, if we clear frac-

tions, not to remove the imaginary quantity i from the denominator, it will easily

reduce to

«4-Z£/ = 0. (14)

This equation is not itself integrable, but we can easily obtain from it a more

general expression, which can be integrated.

By making d'\ and dr] alternately zero in the last of equations (13), we obtain

dz . dz . , ^V— —^ cos IT}, w ^=—- cos trj, (15)
dc, drf

where the differentials of z have become partial, being taken with relation to ^

and 77 only, as separate independent variables. Now since (14) holds for every

point of the required surface, its differential with relation to | or
77, or both, must

be zero also. Let us therefore differentiate with respect to rj only. Then ob-

serving that

>

d . .
^

i^ „ „ ...
1 -\- -J- 1 iSiniTf

= 1 A —— = I — sec2 in = — tan^ in = ttamn't tan ?w,

we have

^« dZ, ,

d . . , ,

. . dK , dK
-T- = -7- (i +— ? tan t?/) -f- 1 tan tt]
dri dr}^

'

df}
" ' '

drf
'

d^'^drj

=
.tan.^(nan.;;-+—) +^^^

=- +z..tanev

dH . dz , ,~ T^F ^°^ ^'^'vUZJ ^^"^ ^^'

div d'^z . dz
-J— = TT cos t77 —t sin in.
drj drf

'

drf
'

Hence, by adding, we deduce from (14)

d'^z
,

d'^z , r.

dz^ drj^

a partial differential of the second order, the complete integral of which is known
to be

z=M^iV)^F{^-irj), (17)



$66 CALCULUS OF VARLATLONS.

/and F denoting any functions whatever, real or imaginary. See De Morgan's
Diff. and Integ. Calc, pp. 723, 719, putting i for a^^and rj for t. See also Boole's

Diff. Eqs., Chap. XV.

It is evident that, having differentiated (14), the present integral is more gen-
eral than the integral of that equation ;

but it includes the equation of the re-

quired surface, which, when the forms of /and i^are assigned, must be deduced

in the following manner. We have, from the last of equations (10),

Z= I z cos 17] dr}. (18)

in which, by (17), z will become a known function of ^ and r}. Then we shall

obtain t, by integrating with respect to 7} only, observing to add to the result an

arbitrary function of |, which function must be then so determined as to satisfy

(14), otherwise the value of C will be too general. Now substituting this final

value of C in equations (9) and (10), and then eliminating ^ and 7], we shall obtain

the particular equation sought.

As an example, assume

Whence, by (17) and (18),

^ = I {a^-\- brf) cos ir} drj
= —

{ac, -}- brj) i sin it}
— b cos ir] -f- X,

X being any function of I ;
its first and second differential coefficients with re-

spect to I being X' and X" . Now using this value of C in equations (11), we find

easily

u:=^ — bzas^iri -\- X" -\- X, w =.b cos ir},

and

ti-\-w = X"-\-X=o.

The integral of this equation is, as the reader can easily verify by dififerentiation,

X =z c cos ^-|-^' sin ^, <r and ^' being any arbitrary constants. If now we replace

X by this value, we shall have the true expression for C belonging to the parti-

cular surface sought. For greater simplicity, let us now suppose c and c' to be-

come zero, so that X will vanish also, and the value of C will become

C = —
{aq-\- bij) i sin irj

— b cos i?/
= — zi sin ir/

— b cos ir/. (ig)
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Now resuming equation (9) and the first equation (10), and eliminating between

them X and y alternately by multiplication, and substituting for C from (19), and for

—- its value — ai sin it], we shall obtain

X — b cos IT] cos I
— ai sin ii] sin |,

y
— b cos irj sin ? -|" ^^' ^in ^'^ cos I,

z = aq-}- brj.

(20)

the last equajtion having been obtained before. Or if in the same equations we

write

X =-rQOS,(a), y T= rsmoo,

observing that

xcos^-{-ysxn | = r(cos oj cosl4- sin go sin ?) = rcos(G!? — ^),

X sin ^ — y cos S = r (cos go sin |
— sin go cos ^) = r sin {co

—
^),

we have in polar co-ordinates, z remaining as before,

rcos(o!3
—

^) = ^cos/77, r sin {go
—

^)^^ ai sin irj, z-= a^-\- brj. (21)

If now, in equations (20) or (21), we can eliminate q and rj, we shall obtain a par-

ticular equation of the minimum surface. Suppose we make « zero. Then (21)

gives

GO —^ = and V =
-i^>

and by the first of equations (4) we shall have

r = b cos — =: -\^-\-e f>

b 2\

which is evidently the equation of the surface generated by the revolution of a

catenary about the axis of z, that axis coinciding with the directrix
;
which is the

same result as has been previously obtained. Making b zero while a is not, we
have

^ It . Z TC . Z
G3— |=— , 1 = -, C£>= — + -,

2 a 2. a

the equation of a helicoid.

When a and b are any constants whatever, we can still eliminate ^ and r]
from

(21). As the result merely is given by Moigno, we will here indicate the work
without explanation. We have
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r^ = b^ cos^ 27]
— a^ sin^ irf

= r^ (sin^ it] -\- cos^ irf),

r^+ a2 = (^2 4. ^2).cos2 irj^ r''-b^z=- («2 _|_ ^2) gin^ iy.

i tan z7?
= i/--__i! tan {Go-^) = \i tan ?7,

<j!^
— aci) = — a tan

'

(?»tan;^)=-«tan '-(e/^ZJj,

/sin/77 = -
(<?-^

—
<?»?), cos?7 = -

(^->7+ ^)» COS /t; 4" 2 sin ?77
= (f

—
n,

^77=— ol. (cos ev+ e sin im =— 5/ — =z— a^.

Whence we obtain

z— aoa = — «tan— *

]by ^+a^\ 4/^qr^
^^^^

This equation evidently represents a surface generated by a helicoid move-

ment about the axis of z, of a plane curve whose equation will be given by (21) if

in it we make go zero, and r equal to x.

NOTE TO ART. 372.

When, however, m = — 2, equation (7) will not give the true solution. But

by integrating for this case separately, just as before, we shall obtain 2J3

'
<?•'< !.-^ OF THR

rlFOHit
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